
United States Patent 1191 
Kramer 

IlllllllllllllIllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll 
US005253189A _ 

[11] Patent Number: 5,253,189 ' 

[45] Date of Patent: Oct. 12, 1993 ' 

[54] QUALITATIVE KINEMATICS 
[75] Inventor: Glenn A. Kramer, Austin, Text. 

[73] Assignee: Schlumberger Technologies, Inc., San 
Jose, Calif. 

[21] Appl. No.: 365,586 
[22] Filed: Jun. 13, 1989 

[51] 1111. C1.5 ............................................. .. ooscms 
[52] us. at. .................................. .. 364/578; 364/512; 

395/10; 395/81; 395/99; 395/920 
[58] Field ofSearch ..................... .. 364/512,513, 51s; 

395/81, 10, 99, 920 

[56] References Cited 
U.S. PATENT DOCUMENTS 

4,736,306 4/1988 Christensen et a1. ............. .. 364/513 
4,831,548 5/1989 Matoba et a1. ...... .. 

4,835,709 5/1989 Tsai ................................... .. 364/513 

OTHER PUBLICATIONS 

Robot Simulator in TIPS/Geometric Simulator; Okino 
et a1; Robotics & Computer-Integrated Manufacturing; 
vol. 3, No. 4, pp. 429-437; 1987. 
Automated Reasoning about Machine Geometry and 
Kinematics; Gelsey et al; Proc. of the 3rd Conf. on 
Arti?cial Intelligence Applications; Feb. 1987; pp. 
182-187. ' 

Heginbotham et a1., 9th International Symposium on 
Industrial Robots, Washington, D.C., Mar. 13-15, 1979, 
pp. 563-574. . 

Meyer, IBM J. Res. Develop. (1981) 25: 955-961. 
Levary et al., Expert Systems (1988) 5: 120-129. 
Orlandea et al., J. of Eng. for Industry (1977) 99: 
780-784. 
Shigley et al., Theory of Machines and Mechanisms, 
Chapter 5, pp. 169-192, McGraw-Hill Book Company, ' 
1980 ' 

Erdman et al., Mechanism Design: Analysis and Synthe 
sis, Chapter 8, pp. 391-478, Prentice Hall, Englewood 
Cliffs, N.J., 1984. 
Artobolevsky, Mechanism in Modern Engineering De 
sign; originally published as Manual of Mechanisms, 
USSR Academy of Sciences, 1947-1952; translated and 
reprinted, Mir Publishers, Moscow, 1975. 
Cagan and Agogino, “Innovative Design of Mechanical 

Structures from First Principles,” to appear in Al 
EDAM, 1988. 
Hall, Kinematics and Linkage Design, Chapter 7, pp. 
111-153. 
Hrones and Nelson, Analysis of the Four-Bar Linkage, 
the Technology Press of MIT and John Wiley & Sons, 
Inc., New York, 1951. 
Kowalski, “The VLSI Design Automation Assistant: A 
Knowledge-Based Expert System,” Ph.D. Thesis, 
Dept. of Electrical and Computer Engineering, Car 
negie-Mellon University, Apr. 1984. 
Mead and Conway, Introduction to VLSI Systems, Ad 
dison-Wesley, Reading, Mass, 1980. 
Roylance, “A Simple Model of Circuit Design,” MIT 
Arti?cial Intelligence Lab Memo AI-TR-703, 1983. 
Turner and Bodner, “Optimization and Synthesis for 
Mechanism Design,” Proc. of A UT OFA CT -88, Detroit, 
Oct. 1988. 
Press et a1., Numerical Recipes: The Art of Scientific 
Computing, Cambridge University Press, 1986. 
Sutherland, “Sketchpad: A Man-Machine Graphical 
Communication System,” Ph.D. Thesis, MIT, Cam 

_ bridge, Mass, 1963. 

(List continued on next page.) 

Primary Examiner-Allen R. MacDonald 
Attorney, Agent, or Firm-Townsend and Townsend 

[57] answer 
A method and apparatus for performing kinematic anal 
ysis of linkages is disclosed. Generalized mechanisms 
are selected from a catalog of mechanisms. From an 
initial selection of mechanisms, the one most closely 
matching a desired behavior is chosen and an optimiza 
tion procedure is conducted. The method may be pre 
ceded by a qualitative kinematic analysis or the qualita 
tive analysis may be used in lieu of a catalog selection. 
An improved optimization technique is disclosed, along 
with a closed form kinematic analysis method. 

35 Claims, 8 Drawing Sheets 

Micro?che Appendix Included 
(487 Micro?che, 5 Pages) 



5,253,189 
Page 2 

OTHER PUBLICATIONS 
Boming, “ThingLab-A Constraint-Oriented Simula 
tion Laboratory,” Ph.D. Thesis, Stanford University, 
Stanford Cali?, Jul. 1979. 
Steele, Jr., “The De?nition and Implementation of A 
Programming Language Based on Constraints," Ph.D. 

= Thesis, MIT, Cambridge, Mass, 1980. 
Gelernter, “Computers and Thought”, Feigenbaum and 
Feldman eds, pp. 134-152, McGraw-Hill, New York, 
N.Y., 1963. 
Johnson, “Optimal Linkage Synthesis: Design of a Con 
stant Velocity, Straight Line Motion Scanning Mecha 

nism,” Masters Thesis, University of California, Berke 
ley, Calif., 1985. 
Kota et al., Mechanical Engineering (1987) pp. 34-38. 
Turner, “BravoMOST: Optimal Synthesis for Mecha 
nism Design,” May 10, 1989. 
Bobrow, “Qualitative Reasoning about Physical Sys 
tems: An Introduction,” Artificial Intelligence, vol. 24, 
Nos. 1-3, 1984, pp. 1-5. 
DeKleer et al., “A Qualitative Physics Based on Con 
?uences,” Artificial Intelligence, vol. 24, Nos. 1-3, 1984, 

' pp. 7-83. 

BravoMOST Advertising Brochure. 



US. Patent 0a. 12, 1993 Sheet 1 of 8 5,253,189 

9 
LINKAGE cmws T 

n~ RETRIEVAL memes \ “05mm r22 

B j K GENERATOR 
OUAUTATIVE mums 

[l8 l {I0 I I2 
cousmm GENERAL-PURPOSE nusnmc sown: 
uncuasc —" ornmzca -—- (smuunom 

1 I l ‘ {'6 
f" ‘ cousmmm 2° ANIMATION 

WW5 DISPLAY DISPLAY 

Fl6....l. 





US. Patent Oct.12,1993 Sheet 3 of 8 5,253,189 

Hide. 

>(SEAROH-0ATALOG) ‘ cuoosz A CURVE vmn nous: LEFT; mom mu 
IIIL moouz- um mu mun 
> ms! SELECT ABOX Posmou 0on5 

PLEASE SELECT ABOX Posmou oou: 

09v"? 



US. Patent Oct. 12, 1993 Sheet 4 of 8 5,253,189 

FILM; "9-4a. 



US. Patent Oct. 12, 1993 Sheet 5 of 8 5,253,189 



US. Patent Oct.12,1993 Sheet 6 of 8 5,253,189 

(EDITXIODIFIED) NEW DESIGNZ 

LEFT=0REATE PIVOT, "DUE CREATE GROUND PIVOT. RIGHTMENU 0F (PERATIOIS 

FlG.._lla. 

HTS/6W ‘111/ 
MT IEDITHIODIFIED) NE! DESIGN 2 

ADD SUDE 
| Wild ‘ ‘iii 
snow ammo mums 

zoom out 
zoon m 

RESET RBION 
ms“ moon 
new: vnuuow 
nova IIIDUI 
um moon 
nu mow 

INSPECT TOP LEVEL 

FlG._llb. 



US. Patent Oct. 12, 1993 Sheet 7 of 8 5,253,189 

[EDIT] (MODIFIED) IIEI DESIGN 2 “19mm” 

SIM SWIG CONSTRAINTS 

ZDDII DUT 
ZDDII III 

RESET REGUI 
REFRESH IIIDDW 
RESIAPE IIIIDDI 
IIDVE IIIIDDI 
sum mm 
nu moon 

/ INSPECT TOP LEVEL 
snow com-Mrs on IIUIION ron nus counsuamou mu mrrzasnm uonons 

FI6....IId. 

° E 

WLEFPOREAMTE PwoT. IIIDDLECREATE cnouun PIVOT, munmgw or opmlpus 

EIG._IIc. 



US. Patent Oct.12,1993 Sheet 8 of 8 5,253,189 

[EDIT] (IIODI’EDI NEW DESIONZ 

0 E ‘ - 

LEFT‘OREATE PIVOT. IIIDDLE=DREATE GROUND PIVOT, RIOHT=IIEIIU OF OPERATIONS 

[EDIT] ImDIFIED) NEW DESIGN 2 

9 E 

LEFT=OREATE PIVOT, NIDDLE= ORERI'E GROUND PIVOT, RIBIIT=IIEIIU OF OPERATIONS 



5,253,189 
1 

QUALITATIVE KINEMATICS 

MICROFICHE APPENDIX 

This speci?cation includes micro?che appendices 1-4 
having ?ve sheets with 487 frames. 

COPYRIGHT NOTICE 

5 

A portion of this disclosure contains material which is 10 
subject ‘to copyright protection. The owner has no ob 
jection to the facsimile reproduction by anyone of the 
patent document or the patent disclosure, as it appears 
in the Patent and Trademark Of?ce patent ?le or re 
cords, but otherwise reserves all copyright rights what 
soever. 

BACKGROUND OF THE INVENTION 

1. Field of the Invention 
The present invention is related to the design of me 

chanical devices. In particular the present invention 
provides a system for the kinematic design of mechani 
cal linkages in computer-aided engineering systems. 

2. Description of Related Art 
Linkages are found in a large variety of everyday 

objects. For example, the hinge for an automobile hood, 
an automobile suspension, aircraft landing gear, assem 
bly line mechanisms, the diaphragm in a camera lens, 
cranes, typewriter keys, prosthetic devices, bicycle 
derailleurs, and oil ?eld logging tools are all comprised 
of linkages. Examination of these mechanisms reveals 
that a small collection of moving parts can produce 
very complex motions. - 

Usually, a kinematic design is the ?rst step in the 
design of a linkage. Kinematic design is concerned 
solely with how the mechanism will move, as con 
strained by its geometric and topological properties. 
Once a design with satisfactory kinematic properties 
has been obtained, the designer will take into consider 
ation such things as the physical shape of the links, mass 
properties of the parts, material strengths, and joint 
tolerances. A static force analysis may then be done to 
determine the detailed design of the parts. This may be 
followed, as necessary, by a quasi-static analysis and a 
detailed dynamic analysis to determine operating 
forces, dynamic stresses, maximum velocities and accel 
erations, vibration modes, etc. ‘ 

In order to perform the kinematic design of a new 
linkage, a designer of the linkage must know how to 
select the types and number of parts, their connectivity, 
their sizes, and geometries. These are dif?cult problems 
for several reasons: 

a) A single linkage topology can have many qualita 
tively distinct ranges of operation. An in?nitesimal 
change in one parameter value can cause the linkage to 
move from one behavior operating region into another 
behavioral region with very different characteristics. 

b) Equations of motion are quite complex, even for 
the simplest linkage. Synthesis—-which involves invert 
ing the description of the device’s behavior-is thus 
very dif?cult. ' 

c) A designer must create a linkage which not only 
has particular motion properties, but also meets other 
constraints (e.g., the linkage must be readily manufac 
turable, meet spatial constraints, etc.). 

d) Design problems are usually over or under con 
strained; they are rarely exactly constrained. 
The kinematic design of linkages has been the focus 

of research for over a hundred years. For example, in 
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2 
Burmester, Lehrbuch der Kinematic, A. Felix, Leipzig 
(1888), a method of performing kinematic designs was 
proposed. In Burmester, a series of geometric theorems 
were used to determine linkage behavior. Others utiliz 
ing similar techniques include Erdman et al., Mechanism 
Design, Prentice Hall, Englewood Cliffs, NJ. (1984), 
and Hall, Kinematics and Linkage Design, Wavelength 
Press (1986). 

Synthesis techniques based on Burmester’s theory 
have many limitations that limit their practical use by 
many designers. The theory is generally limited to 4-bar 
and 6-bar planar mechanisms and can economically 
handle only 4 to 5 “precision points,” or points on inter 
est in the mechanism’s path. The number of and types of 
constraints that can be accommodated by Brumester 
Theory is limited; for example, it is generally dif?cult to 
constrain the positions of the ground pivots to speci?c 
areas in space. If a 'problem is overconstrained (e.g., a 
user may need to specify more than 5 precision points) 
Burmester Theory is generally not useful because it has 
not been possible to ?nd a close, but not exact, solution. 
Finally, the techniques require a fair amount of exper 
tise and mathematical sophisitcation on the part of the 
users. 

In some domains, structured synthesis techniques 
make it possible to create whole designs from a func 
tional speci?cation automatically. These techniques 
tend to work in situations where some subset of the 
following problem features are present: 

a) The space of possible design primitives is ?nite and 
parameterizable in some discrete or simple fashion, as in 
digital circuit design systems and structural design pro 
grams. A structured synthesis technique for circuit de 
sign is described in, for example, Kowalski, “The VLSI 
Design Automation Assistant” (1984). 

b) A discrete temporal abstraction suf?ces to describe 
behavior, transforming a problem with continuously 
varying parameters into a problem with a ?nite set of 
discrete parameters, as in VLSI circuit design. See, for 
example, Mead et al., “Introduction to VLSI Systems” 
(1980). 

c) The continuously varying parameters of the prob 
lem are well-behaved, allowing for such techniques as 
monotonicity analysis, which effectively partition the 
parameter-space into a small number of easily charac 
terized regions. See, for example, Cagan eta1., “Innova 
tive Design of Mechanical Structures From First Prin 
ciples ” (1988). , 

Unfortunately, these techniques do not work well in 
all design domains. In the mechanical engineering do 
main, for example, engineered objects may have equa 
tions of motion that are quite complex, highly non lin 
ear, and dif?cult to comprehend. Trying to understand 
these descriptions well enough to synthesize new de 
signs is an extremely dif?cult task. Thus, much design 
proceeds by the designer building and/or simulating 
devices, analyzing the designs, and gaining intuition 
about their behavior over the course of design modi?ca 
tion. As experience in the domain is gained, the design 
cycle is shortened, because the designer has a better 
idea of what will and will not work for a given problem. 

Relying on one’s own or on others’ experience is 
presently the most prevalent means of designing mecha 
nisms. Often, designers repeatedly construct the same 
sort of mechanisms and do not view their domain as 
linkage design. These designers develop their own ter 
minology, design criteria, and solution methods; 
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Burmester theory and other linkage synthesis tech 
niques are unknown to them. An example of this phe 
nomenon is found in the automobile industry. This in 
dustry employs suspension designers, window crank 
designers, hood mechanism designers, etc., but few of 
these people have experience in the general problem of 
linkage design. 

Experience with one narrow segment of linkage de 
sign does not confer the designer with any special com 
petence at designing other types of mechanisms. When 
the suspension designer must create a different type of 
linkage, it is a frustrating, time-consuming task. The 
analytic tools are hard to use, the design space is too 
large and convoluted to keep track of easily, and the 
designer’s intuition gained from previous problems 
often proves useless. Further, because of the complexity 
and non-continuous nature of the device behaviors, the 
traditional expert systems paradigm of coupling proto 
typical examples with a set of design modi?cation oper 
ators is not well suited to synthesizing mechanisms, 
both from the perspective of ef?ciency and of model 
ling what human designers do. 

In an attempt to overcome these problems, the 
ADAMS program (Automatic Dynamic Analysis of 
Mechanical Systems) and IMP (Integrated Mechanisms 
Program) have been used to simulate mechanical sys 
tems. In general, both of these programs use some initial 
con?guration of a mechanical system and project or 
simulate the position, velocity, acceleration, static, and 
dynamic forces in the system in response to an applied 
force by stepping through differentially-small time in 
crements. The ADAMS and IMP programs are de 
scribed, along with a wide variety of other systems, in 
Shigley et al., Theory of Machines and Mechanisms 
(1980), which is incorporated herein by reference for all 
purposes. 
A variety of problems arise in the use of the ADAMS 

program and other similar programs. For example, it is 
often found that the user has over-constrained the sys 
tem at which point the simulator ignores certain con 
straints which have been applied by the user, without 
his or her knowledge. Programs like ADAMS are spe 
cialized for the dynamic analysis of mechanisms, al 
though they claim to be useful for kinematic analysis as 
well. In a dynamic simulation of a mechanism, mass and 
interia terms allow the simulation to stay on a single 
branch of the solution space (there are multiple solu 
tions to both the dynamic and kinematic equations). In 
a kinematic simulation, there is no mass or interia infor 
mation, so the simulator exhibits a tendency to 
“bounce” back and forth between different branches of 
the solution space, unless the step size used is extremely 
small. 

Further, in kinematic optimization it is often desirable 
to “re-assemble” a mechanism at a few selected points 
(the points of interest), rather than simulating a whole 
cycle of the mechanism. This substantially reduces com 
puter usage and the time necessary to create a design. 
ADAMS and other similar programs cannot reliably 
reassemble a mechanism at a few selected points, be 
cause when the mechanism is assembled, the mechanism 
is just as likely to assemble in one con?guration as in the 
other (assuming kinematic assembly only). In a kine 
matic simulation, ADAMS attempts solves this problem 
by calling a “dynamic solver” when necessary. The use 
of a dynamic solver precludes the ability to assemble the 
mechanism at a select set of points in a reliable and 
repeatable fashion. The ADAMS program and others 
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4 
are, therefore, incapable of assembling a mechanism at a 
particular driving input and a particular con?guration. 
Kota et al., “Dwelling on Design,” Mechanical Engi 

neering (August 1987) pp. 34—38 describe a method of 
performing kinematic synthesis (MINNDWELL) in 
which a user creates a dwell mechanism by manually or 
semiautomatically designing an output diad (Z-bars) to 
add on to a four-bar mechanism selected from a catalog. 
No optimization is performed on the dwell mechanism. 
Further, by using a catalog only, without any form of 
optimization, the scope of problems which may be 
solved is extremely limited; to solve a large variety of 
problems the catalog would be unmanageably large. 

In order to optimize a broad range of mechanical 
linkages various statistical methods have been proposed 
including simulated annealing, continuation methods, 
and gradient based optimization. In simulated anneal 
ing, an error function is determined as a function of one 
or more parameters. The error function is by 
selecting two values of the parameter, determining the 
error function for the values, and comparing the values 
of the error function. If the second value of the parame 
ter produces a lower error function, this value of the 
parameter is selected. If the second value parameter 
produces a higher value of the error function it may be 
selected depending on the step and Boltzman probabil 
ity distribution. Simulated annealing is described in Van 
Laarhoven et al., “Simulated Annealing: Theory and 
Applications,” D. Reider Pub. Co. (1987). 
From the above it is seen that an improved method of 

performing kinematic analysis is desired. 

SUMMARY OF THE INVENTION 

A method and apparatus for performing kinematic 
analyses are disclosed. Before performing detailed anal 
ysis of the system using, for example, exact linkage 
geometry, the motions of the mechanisms links subject 
to abstract classes of forces are determined, and the 
con?guration of one or more transitions is determined. 
The method is independent of the exact numerical val 
ues of the mechanism’s link lengths. The simulation 
method uses as input a topological description of a link 
age (links, joints and joint types, and their connectivity), 
and an assumed abstract force or set of forces applied to 
a joint or set of joints. Using the method, the linkage’s 
instantaneous movements subject to the applied for 
ces(s) can be restricted to certain qualitatively distin 
guishable ranges. Given these ranges of movement, it is 
possible to calculate the next qualitatively distinct state 
or set of states to which the mechanism may progress. 
The set of all legal transitions from one qualitative state 
to another qualitative state forms a directed graph, 
herein called an “envisionment.” A particular path 
through the envisionment describes a particular qualita 
tive behavior that a designer intends a mechanism to 
have. 
Each state in the envisionment can only be satis?ed if 

certain geometric constraints hold. By picking a partic 
ular path through a mechanism’s envisionment, the 
geometric constraints are used to restrict the possible 
values of the link lengths to the set of values that satisfy 
the conjunction of the constraints associated with each 
state in the envisionment. The negation of constraints 
associated with states which have been explicitly 
marked as undesirable can also be used to further re 
strict the range of parameter values. Thus, by specifying 
a particular mechanism behavior qualitatively, suitable 
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ranges of parameter values for dimensional synthesis 
can be determined. 

Based on the qualitative analysis (or, alternatively, 
input from a conventional linkage “catalog”), the link 
age is optimized using an improved general purpose 
optimizer. The method recognizes that a vector objec 
tive function is being utilized. In particular, the optimi 
zation method uses information about the pattern of 
changes in the error of each of the individual constraints 
that make up the error function. A step size for each 
parameter in the parameter space is determined. De 
pending how an error function is changing, the optimi 
zation method scales its step size and slightly modi?es 
the direction of the step. 

In some embodiments, an iterative kinematic solver is 
used in the optimization. However, in preferred em 
bodiments, a closed form generator is used. The closed 
form generator generates a non-iterative solution tech 
nique. 
The closed form generator creates assembly functions 

for a mechanism. Knowledge of geometry and topology 
is encoded in the form of rules that are used to “prove” 
by geometric construction that a mechanism of particu 
lar topology can be assembled. When the “proof’ is 
complete, it is run as a procedure to assemble the mech 
anism. The proof by geometric construction uses a small 
amount of up-front computer time, but once the proof is 
complete, run time performance becomes essentially 
linear in mechanism size rather than cubic. 
The method is highly efficient in terms of computer 

usage and much more stable as compared to prior art 
systems. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 provides a general flow chart of the kinematic 
analysis method and apparatus described herein. 

FIG. 2 illustrates a user input screen useful in kine 
matic synthesis. 
FIGS. 3a and 3b illustrate screens showing the opti 

mization process display and a selection menu, respec 
tively. 
FIGS. 4a, 4b, and 4c illustrate a single link in a link 

age, along with the coordinate system used herein. 
FIG. 5 illustrates a 4~bar linkage. 
FIGS. 60 to 6d illustrate possible transition states 

between two links. 
FIGS. 70 to 7c,i1lustrate the possible transition states 

of a 4-bar linkage. 
FIG. 8 illustrates the optimization of a linkage. 
FIG. 9 illustrates a 3-bar linkage used in illustration of 

the closed form kinematic analysis method. 
FIG. 10 illustrates an automobile suspension. 
FIGS. 11a to 11f illustrate the qualitative kinematics 

methods as it is applied to a S-bar linkage. 

DETAILED DESCRIPTION OF THE 
INVENTION 

Contents 

I. General 
II. Kinematic Solver 
III. Closed Form Generator 

A. Subsystem System 
B. Subsystem Utilities 
C. Subsystem Representation 
D. Subsystem Closed-Form 

1. File Match 
2. File Engine 
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6 
3. File 3D-Rules 
4. File SD-Find 

E. Subsystem Geometry 
F. Subsystem Run-Time 

1. File Primitives 
G. Subsystem Simulation 
H. Subsystem Demo 

IV. Optimization Method 
A. File Optimization-Spec 
B. File OS-Functions 
C. File Constraint-De?nitions 
D. File Optimizer 
E. File Lorenberg-Marquardt-Optirnizer 

V. Qualitative Kinematics 
A. File Kempe 
B. Files Crosshair~Blinker and Slider-Blinker 
C. Files Pivots, Bar, Angles, Slider 
D. Files Menus and Labels 
E. Files Flavors 
F. File Constraint-System 
G. File Constraint-System-Z 
H. File Constraints 

VI. Catalog Generation and Selection 
A. File Unisirn 
B. File Newpsil 
C. File 1 Base 
D. File Graph 
E. File Getpath 
F. File Fourier 
G. File Catalog-Linkages 
H. File Catalog 

I. General 

A flow chart of the main components of the system 
disclosed herein is provided in FIG. 1. The designer 
may ?rst select a mechanism from a catalog 9 via re 
trieval language 11. The mechanism is optimized with 
an object-oriented, general-purpose optimizer 10 cou 
pled to a kinematic solver 12. A designer interacts with 
the system through control panels 14 and views the 
results of simulations and optimization runs through 
animated output 16. 
The constraints for a given linkage optimization 

problem are entered in either graphical or textual form 
via constraint language 18. The Linkage Assistant 
(T LA) simulator translates the symbolic constraint de 
scriptions into numerical penalty functions to be used in 
optimization, and maintains a mapping back to the sym 
bolic descriptions for later display. The effect of each 
constraint on the problem solution is displayed both 
graphically and textually via constraint display 20. 
For many problems, the kinematic solution can be 

made substantially faster through the use of closed-form 
generator 22 for kinematic solutions. In a preferred 
embodiment, a qualitative analysis 13 is performed in 
lieu of a catalog selection prior to performing detailed 
numerical analysis. The qualitative analysis procedure 
de?nes how the structure will respond to an applied 
force (qualitatively) and how the structure will pass 
through various landmark states. TLA may, in some 
embodiments, be provided with both a qualitative anal- _ 
ysis mechanism and a catalog selection of the type 
known to those of skill in the art. 
FIG. 2 shows a control panel for an optimizer, in the 

process of optimizing a crane design. The problem con 
straints are shown in the left-most window, labeled 
“Constraints.” A bar graph notation is used to show the 
relative importance (i.e., what fraction of the total error 
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each constraint contributes) of the different constraints 
toward achieving a solution. It will of course be appar 
ent that the particular display mechanisms used herein 
for illustration could readily be replaced by other dis 
play mechanisms. For example, pie charts, numerical 
displays, or color displays (which show “hot spots”) 
could readily be utilized. The middle window, “Infor 
mation,” displays the values of the linkage parameters 
and other related information. The right-most window 
is' the control panel, which allows the user to simulate 
the mechanism, to start and stop optimization, and to 
modify the problem constraint. 
A display of the linkage is shown in FIG. 3a. The 

window in the left shows the initial state of the optimi 
zation. In the example shown therein, it is desired that 
the path of the mechanism pass through points “p0” and 
"p1” as well as moving in a straight line between those 
points. There are restrictions on the width, height, and 
position of the mechanism, as shown in the “Con 
straints” window of FIG. 2. The window on the right of 
FIG. 3a shows the mechanism after optimization. 
A designer may provide an initial guess for the opti 

mization (for example, an existing mechanism that will 
be incrementally modi?ed), or a guess can be generated 
directly from the design constraints. In the latter case, 
problem features may be extracted from the problem 
speci?cation and used to index into the catalog. Alter 
natively, the designer may not have a good idea of what 
constraints to specify, and may choose to browse 
through the possible paths that the class of mechanism 
can trace. The path browser interface to the catalog is 
shown in FIG. 3b. The window on the left is a page 
from the catalog. Each curve shown is the “average” of 
a family of related mechanism paths. Each curve family 
can be inspected. For example, selecting the bottom 
middle curve on the left-hand window results in the 12 
similar mechanism paths of that family being displayed 
in the right-hand window. Thus, the hierarchical nature 
of the browser allows the user to ?nd quickly the kind 
of path required for a particular problem. 

In one embodiment, the code for TLA is written in 
Common LISP, using CLOS (Common LISP Object 
Standard), and HYPERCLASS for object-oriented 
substrates (Languages well known to those of skill in 
the art). CLOS is used to represent linkages comprised 
of links, joints, markers, different optimizers, optimiza 
tion speci?cations (which describe the problem con 
straints and optimization strategy), and the various con 
straints used in the problem speci?cation. CLOS is most 
preferred because of its efficiency in slot accessing, and 
because it can be compiled ef?ciently; both are impor 
tant concerns in the numerically intensive areas of kine 
matic modelling. HYPERCLASS allows for fast and 
easy construction of the user interface. 

Details of the kinematic solver, the optimization 
method, the closed form generator, and the qualitative 
analysis procedure are individually discussed below. 

II. Kinematic Solver 

The kinematic solver 12 used herein could be an 
iterative kinematic solver of the type known to those of 
skill in the art such as the ADAMS solver. In a pre 
ferred embodiment a closed form simulation is provided 
dong with an iterative solver. In preferred embodi 
ment, the closed form simulation method is used when 
ever possible and the iterative kinematic solver is used 
only for problems or portions of problems which cannot 
be solved by the closed form kinematic solver. 
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III. Closed Form Generator 

Traditional kinematic solvers often employ some 
root-?nding algorithm (such as Newton-Raphson) on 
the set of equations de?ned by joint constraints, which 
de?ne how the various links are relatively constrained 
and may be used in the method described herein (see, 
for example, Turner, et al., “Optimization and Synthesis 
for Mechanism Design,” Proceedings ofA UT OFA C T -88 
(1988), which is incorporated herein by reference). 
These equations are solved numerically, not analyti 
cally. However, these solvers are iterative in nature, 
and have two major drawbacks: they are slow; and they 
are often unable to distinguish which branch of a solu 
tion they are following. The algorithms typically run in 
time proportional to the cube of the number of joints in 
the linkage. Many kinematics problems can be solved in 
closed form (i.e., analytically), even though they are 
traditionally solved iteratively. 

Therefore, in a preferred embodiment, a closed form 
generator 22 is used to generate a closed form (non-iter 
ative) procedure to assemble a mechanism before it is 
simulated or optimized. Alternatively, when it is not 
possible to generate a closed form procedure, the 
method generates a procedure which uses a mix of 
closed form and iterative solution techniques. The re 
sult is that the kinematic solver requires little or no 
iteration, permitting the system to run faster than prior 
art systems. Further, it is possible to reduce or eliminate 
chaotic behavior in the solution of the system and may 
result in an explicit representation of which root of an 
equation is desired (and, hence, the physical manner in 
which the mechanism is to be assembled). 

In general, the method herein provides for the auto 
matic creation of “assembly functions” for computer 
simulation and optimization of mechanisms. An assem 
bly function is a function which assigns values to the 
position and orientation state variables for the bodies 
that comprise the mechanism, subject to a set of con 
straints (e.g., the driving inputs of the mechanism, limits 
on motions, etc.). 

Since only a limited number of arithmetic operations 
are performed for a single mechanism, and since num 
bers in data structures used in conjunction with the 
closed form generator may be reset before each assem 
bly, it is possible to use single precision arithmetic in 
conjunction with the method herein. This results in 
signi?cant time savings in performing simulations and is 
dif?cult to achieve in the use of traditional kinematic 
solvers such as ADAMS. Traditional kinematic solvers 
require double precision arithmetic to avoid accumula 
tion of error over a large number of calculations. 
The closed form simulation system uses a knowledge 

based approach to kinematic assembly. The two forms 
of knowledge that are required for this approach are 
geometric knowledge and knowledge of topology. To 
pological information describes the connectivity of the 
mechanism. Geometric knowledge is used to determine 
how to solve constraints, as well as how to generate 
new constraints that represent partial knowledge about 
components of the mechanism. 
The geometric constraints describing the relative 

motion between various joints in a mechanism have 
been known since the late nineteenth century in, for 
example, Reuleaux, The Kinematics of Machinery, Mac 
Millan and Co. (1876). This knowledge is encoded 
herein in the form of rules that are used to prove by 
geometric construction that a mechanism of a particular 
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topology can be assembled, given certain driving in 
puts. These proofs use a set of high-level lemmas each 
of which has a procedural implementation that solves a 
speci?c set of constraint interactions. When the proof is 
complete it is run as a procedure to assemble the mecha 
nism. 

An example problem is used below to compare the 
traditional and the knowledge-based approaches to 
kinematic assembly. The simplest possible assembly task 
is to put together a three-bar truss. The truss, shown in 
FIG. 9, has three links, a, b and c, and three revolute 
joints J1, J2 and J3. A revolute joint allows rotational, 
but not translational relative movement. By considering 
this a two-dimensional problem, each link need have 
only three degrees of freedom, denoted by x,-, y,-, and 0,‘, 
where xiand y,- designate the location of a point in space 
and 6,- represents an angle of a joint from some fixed 
reference. The symbols a, b and c are used to denote the 
lengths of the links, as well as their names. The con 
straint equations describing the truss are shown below, 
where the ki’s are constants, and where a function value 
of zero indicates that a constraint is satis?ed: 

Equations f1, f1 and f3 state that link a is grounded (i.e., 
its position and orientation are known). f4 and f5 de 
scribe the constraints imposed by joint J1. Link b is free 
to rotate, as long as one end of it remains coincident 
with the point (xmya) on link a. f6 and f7 describe the 
constraints imposed by joint J 2 , while fg and f9 describe 
the constraints imposed by joint J 3. These constraints 
cannot easily be solved by the “one-pass” method in the 
prior art (e.g., Sutherland et al.). Therefore, a relaxation 
technique is used. Solving the equations by the Newton 
Raphson method involves calculating step sizes for 
each parameter, updating the parameter values, and 
iterating until the error is suf?ciently low. If p is the 
vector of parameters (x,,, ya, 64, n5, y;,, 01,, x0, yclic), then 
the step vector 8p is calculated byi 

Each value in 5 is updated as follows: 

dfi 

When the total error fifiis suf?ciently low, the relax 
ation process is complete. One problem with this tech 
nique is that there are two solutions to the assembly 
problem; the one shown in FIG. 9, and the mirror image 
of FIG. 1 about link a. Using Newton-Raphson, there is 
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10 
no way to guarantee which solution will be obtained. 
Another notable observation is that the J acobian matrix 
used in this solution technique is quite sparse: 

dfi he} 
I 0 0 0 0 0 0 O 0 

0 l 0 O 0 O 0 0 0 

O 0 l O O O 0 0 0 
1 O 0 — l 0 O 0 0 0 

0 l 0 0 - l 0 O 0 0 

0 0 0 l 0 -bsin0b — l O sindc 

0 0 0 0 l bcosOb 0 — l —ecos0¢ 
-l 0 asin?a O 0 0 ' l 0 0 

0 —l —¢oos0a 0 0 O 0 l 0 

Therefore, the set of equations may be solved using 
substitution to reduce the sparsity. Consider the follow 
ing steps (new constants k,- are introduced as needed): 

Step 1. Rewrite f4 and f5, using f1 and f2: 

Step 3. Rewrite f6 and f7, using the results of Step 1 and 
Step 2: 

The original problem is now reduced to solving two 
equations in two unknowns, 9b and 0c. The equations 
are nonlinear, so there can still be an ambiguity as to 
which solution is the “right” one. 
The rewrite steps performed above are not blind 

syntactic manipulations of equations; each step has a 
process of translating link b so that point (xb,yb) is coin 
cident with point (xmya). Likewise, Step2 can be satis 
?ed by the translation of link 0 so that point (xayc) is 
coincident with the other end of link a. The as-yet 
unconstrained ends of links b and c must lie on circles of 
radius b and c, respectively, centered about their corre 
sponding ?xed ends. The location of I; can be found by 
intersecting these circles. Note that two circles intersect 
in at most two points, which are the two solutions that 
Newton-Raphson might produce. The assembly of the 
truss by geometric construction may, therefore, be sum 
marized as follows: 

(1) Note that link a is grounded. 
(2) Translate link b to satisfy the coincidence con 

straint of joint J1. 
(3) Translate link c to satisfy the coincidence con 

straint of joint I3. 
(4) Intersect a circle of radius b centered at J1 with 

the circle of radius 0 centered at J3 to ?nd the location 
Of J 2. 
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(5) Rotate link b about J1 until its free end is coinci~ 
dent with 1;. 

(6) Rotate link c about J 3 until its free end is coninci 
dent with 1;. 
When this kind of reasoning is extended from two 5 

dimensions to three, there is no longer a simple mapping 
between state variables denoting a link’s degrees of 
freedom and the solution of the constraint equations. 
For example, a rotational axis in three-dimensional 
space de?nes a complex set of relations between the 
rotational parameters of an object. Constraining the 
orientation of a link to a rotational axis does not neces 
sarily ?x any of the rotational state variables, but it 
makes later solution easier when other constraints are 
determined. By reformulating the kinematic assembly 
problem from algebraic equations to geometric con 
straints, a more usable understanding of the problem 
may be had. 
One important aspect of solving these problems effi 

ciently and easily lies in solving for the mechanism’s 
degrees of freedom, rather than trying to solve for its 
state variables. Describing the state of a rigid body is 
through its degrees of freedom is more natural and 
?exible. 
A rigid body in 3-space has six degrees of freedom. 25 

These can be speci?ed by the use of six state variables as 
in an algebraic formulation. The state variables de?ne a 
mapping between the local coordinate system of the 
rigid body and the global coordinate system of the 
world. The six state variables may be denoted <x 
,y,z,0x, 0x,0z>, where the sub-tuple <x,y,z> denotes 
the position of the origin of the local coordinate system 
in global coordinates, and the sub~tuple <0,“ 0,‘, 02> 
denotes the rotation of the axes relative to the global 
coordinate system. Fixing the value of a state variable 
of a rigid body implies removing one degree of freedom 
from the body. However, ?xing a degree of freedom in 
a body does not imply determining one of its state vari 
ables. Pinning down a degree of freedom may instead 
introduce a complicated set of relations between several 
state variables. Consider the following: Suppose a par 
ticular point p is constrained on a body B to be ?xed in 
space. This removes three degrees of freedom from the 
body (it is still free to rotate about p). However, this 
constraint does not allow us to determine any of the 
state variables of B. If p were at <0,0,0> in F5 local 
coordinates, then <x,y,z> would be fully known. But 
in general, p could be at any position in B5 local coordi 
nates, so <x,y,z> is constrained to lie on a sphere 
centered at p. Since a sphere is a surface with two de 
grees of freedom, this constraint accounts for one of the 
degrees of freedom that was removed. The other two 
degrees of freedom contribute to relations between the 
rotational and translational state variables. If the point 
<x,y,z> is placed at some position (u,v) on the afore 
mentioned sphere, this new point and p together de?ne 
an axis of rotation for B; that is, B now has only one 
rotational degree of freedom remaining. The axis of 
rotation could be at an arbitrary angle with respect to 
B’s local coordinate system, so it de?nes a complex 
relation between 0x, 0,, 02. Thus, ?xing point p on body 
B has not determined any of the six state variables, but 
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12 
rather has speci?ed a set of complicated nonlinear con 
straints between all six state variables. 

Pinning down degrees of freedom is substantially 
easier than attempting to derive the complex relations 
between the state variables of all links in a mechanism. 
In fact, there is a body of literature concerning graphi 
cal analysis of mechanisms, dating from the late nine 
teenth century; some textbooks still introduce kinematic 
analysis using graphical methods. 

In a mechanism, a joint between links A and B causes 
points on link B to be constrained relative to link A's 
coordinate system (and conversely). The geometric 
constraints describing the relative motion between vari 
ous' joints used in mechanisms were investigated by 
Reuleaux in 1876. The loci of possible positions for 
as-yet unconstrained points on links are relatively sim 
ple surfaces and curves, such as planes, spheres, cylin 
ders, circles, lines, etc. A joint attached to links A and B 
must satisfy some constraints relating to the loci of 
possible motions from link A and B. Thus, by intersect 
ing the geometric constraints of link A and B, more 
information is derived concerning the exact location of 
the joint. As joints are located, they further restrict the 
degrees of freedom of the links they connect. In this 
way, increasingly more speci?c information about the 
positions and orientations of the mechanism’s links may 
be derived. 

EXAMPLE 

A second example is provided in FIG. 10 in which a 
simple automobile suspension 100 is illustrated. The 
suspension includes ground 102, upper control arm 104, 
lower control arm 106 and pin 108. The driving input on 
the mechanism is 0, the angle between the lower control 
arm and ground. For purposes of the discussion below, 
grounds 102 are represented by markers R1 and R2, the 
left end of the upper control arm is represented by 
marker UCARI and the right end is indicated by 
marker UCASl, the left end of the lower control arm 
106 is indicated by marker LCARI and the left end is 
indicated by LCASl, and the upper and lower ends of 
king pin 108 are indicated by markers KPSl and KPSZ, 
respectively (S indicating spherical joint and R indicat 
ing revolute joint). 
For each marker there can be knowledge of align 

ment, orientation, and/or position. Initially, there is no 
knowledge of any of these items. The angle of the lower 
control arm is designated as the input. Each joint im 
poses constraints (which are stored in a database) be 
tween the two markers that participate in that joint. For 
example, a spherical joint imposes the constraint that 
the two markers be coincident, while a revolute joint 
imposes the constraint that the two markers be coinci 
dent and that their z-axes are aligned. 
To start, the method works its way around the link 

age and ?lls in knowledge in a “table” which arises from 
givens of the system. To fill in the table, the TLA sys 
tem will have to postulate that certain actions have been 
carried out that will ensure the inferences are valid. 
These actions will then be turned into a program to 
assemble the linkage. 
The method is iteratively applied to ?ll in Table 1: 

TABLE 1 

R1 R2 UCARl UCASI LCARl LCASl KPSl KPSZ 

Alignment? 
Orientation? 
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TABLE l-continued 
R1 R2 UCARl UCASl LCARl LCAS l 

Positon? 

The method goes through cycles of deductions. The 
cycles include steps of choosing any applicable infer 
ence, generating an operation to be performed on the 
linkage, recording newly known information, and test 
ing whether the process is complete. In the present case, 10 
the process begins a cycle in which, since the ground 
“link” is fully known, its position, orientation, and align 

KPS] 

14 

KPSZ 

rotation must be about the point in space occupied by 
marker UCARl, since rotation about any other point 
would cause its position (previously marked as shown) 
to be changed. A similar line of reasoning allows the 
alignment of the z axes of marker R2 and marker 
LCARI. Table 4 illustrates the state of knowledge at 
this point: 

TABLE4 
in R2 UCARl ucas1 LCARl LCASl KPSI KPSZ 

A? V V V V 
or V V 
P’! V V V V 

ment are known. Therefore, the ?rst inference which is 20 
chosen is that since the markers R1 and R2 are 
grounded, their position, orientation, and alignment are 
known. The newly recorded information is re?ected in 
Table 2 below. This ?rst inference is stored for later 
uses. 

With the new actions added, the program of actions is 
now: 

1. Cache markers on ground link. 
2. Translate upper control arm to make UCARI coin 

cident with R1. 
3. Translate lower control arm to make LCARI coin 

TABLE 2v 
Rl R2 UCARI UCASl LCARl LCASl KPSl xrsz 

A? V V 
0? V V 
P? V V 

Since a signi?cant amount of information is not yet 
known, the process continues. In a second cycle the 
inference which is chosen is that marker R1‘ is known 
and shares a position with UCARl. Provided that the 
upper control arm is translated so that markers UCARl 
and R1 are coincident, the position of marker UCARI 
can be known. This requires an action: “Translate the 
upper control arm to make UCARl coincident with 
R1.” A similar cycle can be carried out for LCARI, 
after which the knowledge table can be updated as 
shown in Table 3. 

35 

cident with R2. 
4. Rotate upper control arm about UCARI to make 

the z axis of UCARl align with the z axis of R1. 
5. Rotate lower control arm about LCARI to make 

the z axis of LCARI align with the z axis of R2. 
It can also be seen that the alignment and orientation 

of the spherical joints KPSl, KPSZ, LCASI, and 
UCASI are not necessary because the only constraints 
on spherical joints are that their markers be coincident; 
there are no constraints on the relative alignment or 
orientation of the two markers. Accordingly, Table 4 

TABLE3 
R1 R2 UCARl UCASl LCARl LCASl KPSI KPSZ 

A? V V 
0? V V 
in V V V V 

The next cycle uses the “knowledge” that since 
markers UCARI and R1 are joined at a revolute joint, 
their x axis (extending out of the page) must be aligned. 

can be modi?ed as shown in Table 5 where “X” means 
that the system does not care whether the value is found 
or not because it is not needed: 

TABLE 5 
R1 R2 UCARl UCASl LCARl LCASI KPSl KPSZ 

A? V V V x V x x x 
0? V V x x x x 
m V V V 

At this point the program of “actions” looks like: 60 
l. Cache markers on ground link. 
2. Translate upper control arm to make UCARl coin 

cident with R1. 
3. Translate lower control arm to make LCAR‘ coin 

cident with R2. 
As can be seen in Table 3, the z axis of R1 is already 

known, so the action that must occur to align the axes is 
to rotate the upper control arm to align the axes. This 

65 

The next inference uses knowledge of the driving 
input 6 to set the relative orientation of markers 
LCARI and R2. These markers are already aligned. 
For the driving input constraint to be satis?ed, the 
lower control arm must be rotated about the z axis of 
LCARl until the x axis of LCARl makes an angle of 0 
with the x axis of R2. Now marker LCARl has a posi 
tion and an orientation (a marker having an orientation 
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implies the marker also has an alignment, since an align 
ment is a prerequisite to orienting the marker). Thus, 
the marker has no more degrees of freedom, implying 
that the link it is attached to must be in its ?nal place for 
this assembly. Whenever a marker on a link has both a 
position and an orientation, then its associated link may 
be marked as “known.” Thus, the next action is to cache 
the markers on the lower control arm. This means all 
markers on the lower control arm have known posi 
tions, alignments, and orientations. Table 6 re?ects the 
new state of knowledge. 

10 

16 
2. Translate upper control arm to make UCARl coin 

cident with R1. 
3. Translate lower control arm to make LCARI coin 

cident with R2. 
4. Rotate upper control arm about UCARI to make 

the z axis of UCARI align with the z axis of R1. 
5. Rotate lower control arm about LCARI to make 

the z axis of LCARl align with the z axis of R2. 
6. Twist lower control arm about 2 axis of LCARl to 

make x axis of LCARI makes an angle of 0 with the x 
axis of R2. 

TABLE 6 

R1 R2 UCARl UCASl LcARl LCASl XPS] KPSZ 

A? V V V x V x x x 
0? V V x V x x x 
P? V V V V V 

The program of actions now looks like: 7. Cache markers on link lower control arm. 
1. Cache markers on ground link. 20 8. Translate the kingpin to make KPS2 coincident 
2. Translate upper control arm to make UCARl coin 

cident with R1. 
3. Translate lower control arm to make LCARI coin 

cident with R2. 
4. Rotate upper control arm about UCARI to make 

the z axis of UCARl align with the z axis of R1. 
5. Rotate lower control arm about LCARI to make 

25 

with LCASl. 
It is now noted that there is a constraint on UCASl, 

i.e., it must lie on a circle with its center on R1. This 
constraint comes from restrictions on link movement 
imposed by the revolute joint that connects R1 and 
UCARI. This constraint is stored along with the infor 
mation shown in Table 7, as shown in Table 8: 

TABLE 8 

R1 R2 UCARl ucAs1 LCARl LCASI KPSl KPS2 

A? V V V x V x x x 
0? V V x V x x x 
P? V V V V V V 
Constraint Circle 

the z axis of LCARI align with the z axis of R2. 
6. Twist lower control arm about 2 axis of LCARl to 

make x axis of LCARl make an angle of 0 with the x 
axis of R2. 

It can now be noted that KPS2 and LCASI are coin 
cident markers on a spherical joint. Therefore, KPSl 
must lie on a sphere around the marker KPSZ. This 
information is added to Table 8, as shown in Table 9: 

TABLE 9 
R1 R2 UCARI UCASl LCARl LCAS] KPSl KPSZ 

A? V V V x V x x x 
0? V V x V x x x 
P’! V V V V V V 
Constraint Circle Sphere 

7. Cache markers on link lower control arm 
Provided that the kingpin is translated so that mark 

ers LCASl and KPS2 are coincident, the position of 
marker KPS2 can be known. This requires an action: 
“Translate kingpin to make KPSZ coincident with 
LCASl.” Table 7 shows the state of knowledge at this 
point: 

50 

The next inference/deduction chosen is to intersect 
the constraints of UCASl and KPSl since they are 
constrained markers on the same joint. Since there are 
two possible intersection points the program must ob 
tain additional input from the user which will indicate 
whether the joint should be assembled in the con?gura 
tion shown in FIG. 10 or an “other” possible manner. 

TABLE 7 
R1 R2 UCAR] UCASl LCARl LCASl KPSl KPSZ 

A? V V V x V x x x 
0? V V x V x x x 
P? V V V V V V 

The program of actions now looks like: After this intersect procedure is conducted, the position 
1. Cache markers on ground link. of UCASl and KPSl are known. Table 9 can now be 

amended as shown in Table 10: 

' TABLE 10 

RI R2 UCARl UCASl LCARI LcAst KPSI KPSZ 

A? V V V x V x x x 
0? V V x V x X x 
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TABLE 10~continued 
R1 R2 UCARI UCASl LCARl LCASl KPSl KPSZ 

P’! V V V V V V V V 

The program of actions is now: 
1. Cache markers on ground link. 
2. Translate upper control arm to make UCARI coin 

cident with R1. 
3. Translate lower control arm to make LCARl coin 

cident with R2. 
4. Rotate upper control arm about UCARl to make 

the z axis of UCARl align with the z axis of R1. 
5. Rotate lower control arm about LCARl to make 

the z axis of LCARI align with the z axis of R2. 
6. Twist lower control arm about 2 axis of LCARl to 

make x axis of LCARl makes an angle of 0 with the x 
axis of R2. 

7. Cache markers on link lower control arm. 
8. Translate kingpin to make KPSZ coincident with 

LCASI. 
9. Intersect the circle (centered at R1 whose normal is 

the z axis of R1 and whose radius is the distance from 
UCASl to the z axis of R1) with the sphere (centered at 
KPSZ whose radius is the distance between KPSI and 
KPSZ). Rotate upper control arm about 2 axis of R1 so 
that UCASI is at the intersection point. Rotate kingpin 
about KPSZ so that KPSI is at the intersection point. 

' There is now enough information to determine that 
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8. Translate kingpin to make KPSZ coincident with 
LCASl. 

9. Intersect the circle (centered at R1 whose‘ normal is 
the z axis of R1 and whose radius is the distance from 
UCASl to the z axis of R1) with the sphere (centered at 
KPSZ whose radius is the distance between KPSI and 
KPSZ). Rotate upper control arm about 2 axis of R1 so 
that UCASI is at the intersection point. Rotate kingpin 
about KPSZ so that KPSl is at the intersection point. 

10. Cache markers on upper control arm. 
ll. Cache markers on kingpin. ' 
This set of actions is now compiled and stored as a 

program that may be used iteratively to solve the mech 
anism’s marker locations for different values of driving 
inputs. 
Not all mechanisms may be simulated using this 

method. Linkages exist for which techniques like relax 
ation or continuation are the only recourse. However, a 
majority of linkages of interest to real designers may be 
simulated using the new approach. The closed form 
approach to linkage simulation has signi?cantly better 
computational properties than traditional simulation 
algorithms for the following reasons: 
The algorithm is substantially faster than existing 

the upper control arm link is completely known 30 methods. Although the proof by geometric con 
(namely, two positions and an alignment). Thus, the struction has a complexity which is polynomial in 
next action is to cache all the markers on upper control the size of the mechanism, the assembly procedure 
arm. This means that the orientation of UCARl is now it derives grows linearly with mechanism size. 
known. Table 10 can now be completed as shown in Thus the run-time performance of the program is 
Table ll: 35 linear in the size of the mechanism rather than 

TABLE 11 
R1 R2 UCARl UCASl LCARI LCASl KPSl KPSZ 

A? V V V x V x ' x x 
0? V V V x V x x x 
P? V V V V V V V V 

The link kingpin has only two markers, neither of cubic. The storage required by the assembly proce 
which has orientation or alignment. There is not enough dure is also linear in mechanism size, as opposed to 
information to fully determine its position. In fact, it can 45 the quadratic dependence exhibited by traditional 
be seen that the kingpin is free to rotate without affect- assembly methods. 
ing its performance in the context of this linkage. This is The branches of the solution space are described by a 
known in the literature as a passive degree of freedom. vector of “con?guration variables.” In this way, a 
TLA recognizes this situation and marks the kingpin as particular branch of the solution may be speci?ed 
being fully known. (In a real auto suspension, the king- 50 for mechanism assembly, avoiding the problem of 
pin would be connected to the steering linkage; this ambiguous assembly. 
connection would give the kingpin three markers, and Redundant information can be accommodated easily. 
then it could be located in space.) The kingpin markers Since constraints on the mechanism are being 
may now be cached. solved sequentially, there is no need to balance the 
The ?nal program of actions is shown below: 55 number of constraints with the number of un 
l. Cache markers on ground link. 
2. Translate upper control arm to make UCARI coin 

cident with R1. 
3. Translate lower control arm to make LCARl coin 

cident with R2. 
4. Rotate upper control arm about UCARI to make 

the z axis of UCARl align with the z axis of R1. 
5. Rotate lower control arm about LCARI to make 

the z axis of LCARI align with the z axis of R2. 
6. Twist lower control arm about 2 axis of LCARI to 

make x axis of LCARI makes an angle of 0 with the x 
axis of R2. 

7. Cache markers on link lower control arm. 

60 
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knowns (as in relaxation techniques). 
A variety of other analysis tasks may be solved using 

generalizations of the knowledge-based kinematic as 
sembly technique. Some of these include: 

' Finding the instant centers of rotations of the various 
links in a mechanism. The instant center of rotation 
is the point in space about which the link can be 
considered to rotate at a given particular instant. In 
three dimensions. the instant center is de?ned by a 
screw axis. 

Determining kinematic velocities and accelerations, 
i.e., how a link moves or accelerates with respect to 
the movement of another part of the mechanism. 
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Determining mechanical advantage and torque ratios. 
These are measures of the “leverage” that is gener 
ated by the mechanism. 

Determining J acobian matrices in closed-form for use 
in optimization and sensitivity analysis. 

Appendix 1 provides source code (in common LISP) 
for implementing the closed-form kinematics method 
disclosed herein. The code has been used on a Symbol 
ics LISP machine and a Sun Workstation, but it will be 
apparent to those of skill in the art that the method 
could be adapted to any one of a variety of program 
ming languages (e.g., pascal) and used on any one of a 
variety of hardware systems (e.g., IBM, DEC, etc.). 
Appendix 2 provides a worked-out example which pro 
vides the closed form results for an automobile suspen 
sion. The ?le spatial-Four-Bar de?nes the spatial four 
bar linkage which is used in the example. 
The method approaches the assembly of a linkage as 

a matter of geometrical theorem-proving. To ?nd a way 
of assembling the linkage is to construct a proof that the 
linkage can, in fact, be assembled. The proposition that 
a certain linkage can be assembled, given that certain 
information is provided about it, is referred to herein as 
an assembly theorem. Given a linkage and told what 
initial information will be provided about it, the TLA 
system attempts to prove the corresponding assembly 
theorem. As it does so, it derives a procedure for assem 
bling the linkage given that initial information. 

This assembly procedure is stored away for future 
use. It is very fast, operates in a ?xed set of data struc 
tures, and can be called repeatedly. Since the assembly 
theorem’s proof does not depend on any of the numeri 
cal values of a given linkage, such as the exact locations 
or sizes of the links and joints, the user can vary any or 
all of these values at will without having to derive a 
new assembly procedure. The system checks automati 
cally to ensure that the assembly theorem does not 
depend on the numerical values of the linkage. For 
example, the assembly theorem’s proof might depend 
on three points on a certain link not being colinear. A 
change in the link’s structure that brought these three 
points onto a common line would require the system to 
locate a new proof of the assembly theorem, if in fact 
one exists. Such situations are not common. 
An assembly procedure takes several inputs. It takes 

a fully speci?ed linkage, including the sizes and shapes 
of all its links, the locations of the various joints on these 
links, and the types of the various joints. (The attached 
code provides for revolute, prismatic, spherical, univer 
sal, cylindrical, and planar joints.) It also takes a number 
of “input parameters,” that is, the values of some of the 
parameters of certain of the linkages’s joints, such as the 
angle between the two links that are attached by a cer 
tain revolute joint or the displacement of a certain pris 
matic joint. Finally, an assembly procedure must often 
be supplied with a number of binary con?guration pa 
rameters to resolve qualitative ambiguities in the assem 
bly of the linkage such as mirror-image pairs of possible 
ways of assembling portions of the linkage. 
The TLA system can be usefully divided into four 

major parts, each of them organized into a number of 
subsystems. Each subsystem is further divided into a 
number of ?les. 
The ?rst part consists of relatively task-independent 

utility routines (in the subsystem Utilities), data struc 
tures and library functions for 3-D geometry (in the 
subsystem Geometry), together with the task-speci?c 
representations of linkages, links, joints, and so forth 
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and the common operations upon them (in the subsys 
tem Representation). 
The second part is the code in the subsystem Closed 

Form that takes as input a qualitative description of a 
linkage and a speci?ed set of input parameters and pro 
duces as output an assembly procedure. The “computa 
tion” in this part of the system is entirely symbolic. 
The third part is the code that is used in assembling 

particular linkages. The computation in this part of the 
system, by contrast, is heavily numerical. In addition to 
the procedures that compute the positions and orienta 
tions of the various elements of a linkage (in the subsys 
tem Run-Time), this part of the system also includes 
routines for graphically displaying linkages and tracing 
their motion (in the subsystems Window and Display). 
The fourth and ?nal part is an open-ended set of 

routines that ask for assembly procedures to be con 
structed and then actually use them for various useful 
ends such as simulating a linkage’s motion (in the sub 
system Simulate), exploring of the consequences of 
varying a linkage’s parameters (in the subsystem 
Demo), and then actually adjusting those parameters to 
optimize particular properties of the linkage (in the 
subsystem Optimization, which is discussed in Section 
IV below. 
The TLA system employs a number of software tech 

niques that might not be wholly familiar. For example, 
object-oriented programming is utilized. TLA is writ 
ten in Lisp because of the programming environments 
that are available for rapid prototyping of symbolic 
systems in Lisp. Little of this code should be difficult to 
translate to a language such as Pascal. Some of the code 
will not translate directly, though, because it is written 
using an object-oriented extension to Lisp called PCL. 
Object-oriented programming allows particular proce 
dures, known as methods, to automatically dispatch to 
different routines depending on the types of their argu 
ments. PCL also supports a reasonably sophisticated 
model of data types in which types can be arranged in a 
hierarchy of more abstractly and more concretely spec 
i?ed structures. Object-oriented programming in gen 
eral and PCL in particular are described in a ?le called 
PCL-Summary, which is stored with the documenta 
tion for subsystem Geometry. PCL is described in 
greater detail in the PCL Manual, available from Xerox. 
Other unusual techniques are included with the discus 
sion of the code below, along with details of each sub 
system. 

A. Subsystem System 
Subsystem System comprises two short ?les that are 

the first to be loaded and de?ne some parameters for the 
remainder of the TLA system. It has two ?les, TLA. 
System and Global-Variables. 
The ?le TLA.System is what the Symbolics Genera 

environment refers to as the “system de?nition” for the 
system named TLA. This system de?nition, established 
using the Defsystem form, permits the several ?les mak 
ing up the TLA system to be compiled and loaded all at 
once in a reasonable fashion. The system de?nition also 
makes explicit the decomposition of the TLA system 
into the subsystems described herein. 
The ?le TLA System is speci?c to the Symbolics 

Genera environment. A similar ?le could readily be 
prepared by those of skill in the art for other LlSP 
implementations (e. g., Lucid Common Lisp) due to lack 
of standards for system de?nition ?les in Common Lisp. 




















































