
United States Patent 1191
Kramer

IlllllllllllllIll
US005253189A _

[11] Patent Number: 5,253,189 '

[45] Date of Patent: Oct. 12, 1993 '

[54] QUALITATIVE KINEMATICS
[75] Inventor: Glenn A. Kramer, Austin, Text.

[73] Assignee: Schlumberger Technologies, Inc., San
Jose, Calif.

[21] Appl. No.: 365,586
[22] Filed: Jun. 13, 1989

[51] 1111. C1.5 ooscms
[52] us. at. 364/578; 364/512;

395/10; 395/81; 395/99; 395/920
[58] Field ofSearch 364/512,513, 51s;

395/81, 10, 99, 920

[56] References Cited
U.S. PATENT DOCUMENTS

4,736,306 4/1988 Christensen et a1. 364/513
4,831,548 5/1989 Matoba et a1.

4,835,709 5/1989 Tsai 364/513

OTHER PUBLICATIONS

Robot Simulator in TIPS/Geometric Simulator; Okino
et a1; Robotics & Computer-Integrated Manufacturing;
vol. 3, No. 4, pp. 429-437; 1987.
Automated Reasoning about Machine Geometry and
Kinematics; Gelsey et al; Proc. of the 3rd Conf. on
Arti?cial Intelligence Applications; Feb. 1987; pp.
182-187. '

Heginbotham et a1., 9th International Symposium on
Industrial Robots, Washington, D.C., Mar. 13-15, 1979,
pp. 563-574. .

Meyer, IBM J. Res. Develop. (1981) 25: 955-961.
Levary et al., Expert Systems (1988) 5: 120-129.
Orlandea et al., J. of Eng. for Industry (1977) 99:
780-784.
Shigley et al., Theory of Machines and Mechanisms,
Chapter 5, pp. 169-192, McGraw-Hill Book Company, '
1980 '

Erdman et al., Mechanism Design: Analysis and Synthe
sis, Chapter 8, pp. 391-478, Prentice Hall, Englewood
Cliffs, N.J., 1984.
Artobolevsky, Mechanism in Modern Engineering De
sign; originally published as Manual of Mechanisms,
USSR Academy of Sciences, 1947-1952; translated and
reprinted, Mir Publishers, Moscow, 1975.
Cagan and Agogino, “Innovative Design of Mechanical

Structures from First Principles,” to appear in Al
EDAM, 1988.
Hall, Kinematics and Linkage Design, Chapter 7, pp.
111-153.
Hrones and Nelson, Analysis of the Four-Bar Linkage,
the Technology Press of MIT and John Wiley & Sons,
Inc., New York, 1951.
Kowalski, “The VLSI Design Automation Assistant: A
Knowledge-Based Expert System,” Ph.D. Thesis,
Dept. of Electrical and Computer Engineering, Car
negie-Mellon University, Apr. 1984.
Mead and Conway, Introduction to VLSI Systems, Ad
dison-Wesley, Reading, Mass, 1980.
Roylance, “A Simple Model of Circuit Design,” MIT
Arti?cial Intelligence Lab Memo AI-TR-703, 1983.
Turner and Bodner, “Optimization and Synthesis for
Mechanism Design,” Proc. of A UT OFA CT -88, Detroit,
Oct. 1988.
Press et a1., Numerical Recipes: The Art of Scientific
Computing, Cambridge University Press, 1986.
Sutherland, “Sketchpad: A Man-Machine Graphical
Communication System,” Ph.D. Thesis, MIT, Cam

_ bridge, Mass, 1963.

(List continued on next page.)

Primary Examiner-Allen R. MacDonald
Attorney, Agent, or Firm-Townsend and Townsend

[57] answer
A method and apparatus for performing kinematic anal
ysis of linkages is disclosed. Generalized mechanisms
are selected from a catalog of mechanisms. From an
initial selection of mechanisms, the one most closely
matching a desired behavior is chosen and an optimiza
tion procedure is conducted. The method may be pre
ceded by a qualitative kinematic analysis or the qualita
tive analysis may be used in lieu of a catalog selection.
An improved optimization technique is disclosed, along
with a closed form kinematic analysis method.

35 Claims, 8 Drawing Sheets

Micro?che Appendix Included
(487 Micro?che, 5 Pages)

5,253,189
Page 2

OTHER PUBLICATIONS
Boming, “ThingLab-A Constraint-Oriented Simula
tion Laboratory,” Ph.D. Thesis, Stanford University,
Stanford Cali?, Jul. 1979.
Steele, Jr., “The De?nition and Implementation of A
Programming Language Based on Constraints," Ph.D.

= Thesis, MIT, Cambridge, Mass, 1980.
Gelernter, “Computers and Thought”, Feigenbaum and
Feldman eds, pp. 134-152, McGraw-Hill, New York,
N.Y., 1963.
Johnson, “Optimal Linkage Synthesis: Design of a Con
stant Velocity, Straight Line Motion Scanning Mecha

nism,” Masters Thesis, University of California, Berke
ley, Calif., 1985.
Kota et al., Mechanical Engineering (1987) pp. 34-38.
Turner, “BravoMOST: Optimal Synthesis for Mecha
nism Design,” May 10, 1989.
Bobrow, “Qualitative Reasoning about Physical Sys
tems: An Introduction,” Artificial Intelligence, vol. 24,
Nos. 1-3, 1984, pp. 1-5.
DeKleer et al., “A Qualitative Physics Based on Con
?uences,” Artificial Intelligence, vol. 24, Nos. 1-3, 1984,

' pp. 7-83.

BravoMOST Advertising Brochure.

US. Patent 0a. 12, 1993 Sheet 1 of 8 5,253,189

9
LINKAGE cmws T

n~ RETRIEVAL memes \ “05mm r22

B j K GENERATOR
OUAUTATIVE mums

[l8 l {I0 I I2
cousmm GENERAL-PURPOSE nusnmc sown:
uncuasc —" ornmzca -—- (smuunom

1 I l ‘ {'6
f" ‘ cousmmm 2° ANIMATION

WW5 DISPLAY DISPLAY

Fl6....l.

US. Patent Oct.12,1993 Sheet 3 of 8 5,253,189

Hide.

>(SEAROH-0ATALOG) ‘ cuoosz A CURVE vmn nous: LEFT; mom mu
IIIL moouz- um mu mun
> ms! SELECT ABOX Posmou 0on5

PLEASE SELECT ABOX Posmou oou:

09v"?

US. Patent Oct. 12, 1993 Sheet 4 of 8 5,253,189

FILM; "9-4a.

US. Patent Oct. 12, 1993 Sheet 5 of 8 5,253,189

US. Patent Oct.12,1993 Sheet 6 of 8 5,253,189

(EDITXIODIFIED) NEW DESIGNZ

LEFT=0REATE PIVOT, "DUE CREATE GROUND PIVOT. RIGHTMENU 0F (PERATIOIS

FlG.._lla.

HTS/6W ‘111/
MT IEDITHIODIFIED) NE! DESIGN 2

ADD SUDE
| Wild ‘ ‘iii
snow ammo mums

zoom out
zoon m

RESET RBION
ms“ moon
new: vnuuow
nova IIIDUI
um moon
nu mow

INSPECT TOP LEVEL

FlG._llb.

US. Patent Oct. 12, 1993 Sheet 7 of 8 5,253,189

[EDIT] (MODIFIED) IIEI DESIGN 2 “19mm”

SIM SWIG CONSTRAINTS

ZDDII DUT
ZDDII III

RESET REGUI
REFRESH IIIDDW
RESIAPE IIIIDDI
IIDVE IIIIDDI
sum mm
nu moon

/ INSPECT TOP LEVEL
snow com-Mrs on IIUIION ron nus counsuamou mu mrrzasnm uonons

FI6....IId.

° E

WLEFPOREAMTE PwoT. IIIDDLECREATE cnouun PIVOT, munmgw or opmlpus

EIG._IIc.

US. Patent Oct.12,1993 Sheet 8 of 8 5,253,189

[EDIT] (IIODI’EDI NEW DESIONZ

0 E ‘ -

LEFT‘OREATE PIVOT. IIIDDLE=DREATE GROUND PIVOT, RIOHT=IIEIIU OF OPERATIONS

[EDIT] ImDIFIED) NEW DESIGN 2

9 E

LEFT=OREATE PIVOT, NIDDLE= ORERI'E GROUND PIVOT, RIBIIT=IIEIIU OF OPERATIONS

5,253,189
1

QUALITATIVE KINEMATICS

MICROFICHE APPENDIX

This speci?cation includes micro?che appendices 1-4
having ?ve sheets with 487 frames.

COPYRIGHT NOTICE

5

A portion of this disclosure contains material which is 10
subject ‘to copyright protection. The owner has no ob
jection to the facsimile reproduction by anyone of the
patent document or the patent disclosure, as it appears
in the Patent and Trademark Of?ce patent ?le or re
cords, but otherwise reserves all copyright rights what
soever.

BACKGROUND OF THE INVENTION

1. Field of the Invention
The present invention is related to the design of me

chanical devices. In particular the present invention
provides a system for the kinematic design of mechani
cal linkages in computer-aided engineering systems.

2. Description of Related Art
Linkages are found in a large variety of everyday

objects. For example, the hinge for an automobile hood,
an automobile suspension, aircraft landing gear, assem
bly line mechanisms, the diaphragm in a camera lens,
cranes, typewriter keys, prosthetic devices, bicycle
derailleurs, and oil ?eld logging tools are all comprised
of linkages. Examination of these mechanisms reveals
that a small collection of moving parts can produce
very complex motions. -

Usually, a kinematic design is the ?rst step in the
design of a linkage. Kinematic design is concerned
solely with how the mechanism will move, as con
strained by its geometric and topological properties.
Once a design with satisfactory kinematic properties
has been obtained, the designer will take into consider
ation such things as the physical shape of the links, mass
properties of the parts, material strengths, and joint
tolerances. A static force analysis may then be done to
determine the detailed design of the parts. This may be
followed, as necessary, by a quasi-static analysis and a
detailed dynamic analysis to determine operating
forces, dynamic stresses, maximum velocities and accel
erations, vibration modes, etc. ‘

In order to perform the kinematic design of a new
linkage, a designer of the linkage must know how to
select the types and number of parts, their connectivity,
their sizes, and geometries. These are dif?cult problems
for several reasons:

a) A single linkage topology can have many qualita
tively distinct ranges of operation. An in?nitesimal
change in one parameter value can cause the linkage to
move from one behavior operating region into another
behavioral region with very different characteristics.

b) Equations of motion are quite complex, even for
the simplest linkage. Synthesis—-which involves invert
ing the description of the device’s behavior-is thus
very dif?cult. '

c) A designer must create a linkage which not only
has particular motion properties, but also meets other
constraints (e.g., the linkage must be readily manufac
turable, meet spatial constraints, etc.).

d) Design problems are usually over or under con
strained; they are rarely exactly constrained.
The kinematic design of linkages has been the focus

of research for over a hundred years. For example, in

15

20

25

35

40

45

50

55

65

2
Burmester, Lehrbuch der Kinematic, A. Felix, Leipzig
(1888), a method of performing kinematic designs was
proposed. In Burmester, a series of geometric theorems
were used to determine linkage behavior. Others utiliz
ing similar techniques include Erdman et al., Mechanism
Design, Prentice Hall, Englewood Cliffs, NJ. (1984),
and Hall, Kinematics and Linkage Design, Wavelength
Press (1986).

Synthesis techniques based on Burmester’s theory
have many limitations that limit their practical use by
many designers. The theory is generally limited to 4-bar
and 6-bar planar mechanisms and can economically
handle only 4 to 5 “precision points,” or points on inter
est in the mechanism’s path. The number of and types of
constraints that can be accommodated by Brumester
Theory is limited; for example, it is generally dif?cult to
constrain the positions of the ground pivots to speci?c
areas in space. If a 'problem is overconstrained (e.g., a
user may need to specify more than 5 precision points)
Burmester Theory is generally not useful because it has
not been possible to ?nd a close, but not exact, solution.
Finally, the techniques require a fair amount of exper
tise and mathematical sophisitcation on the part of the
users.

In some domains, structured synthesis techniques
make it possible to create whole designs from a func
tional speci?cation automatically. These techniques
tend to work in situations where some subset of the
following problem features are present:

a) The space of possible design primitives is ?nite and
parameterizable in some discrete or simple fashion, as in
digital circuit design systems and structural design pro
grams. A structured synthesis technique for circuit de
sign is described in, for example, Kowalski, “The VLSI
Design Automation Assistant” (1984).

b) A discrete temporal abstraction suf?ces to describe
behavior, transforming a problem with continuously
varying parameters into a problem with a ?nite set of
discrete parameters, as in VLSI circuit design. See, for
example, Mead et al., “Introduction to VLSI Systems”
(1980).

c) The continuously varying parameters of the prob
lem are well-behaved, allowing for such techniques as
monotonicity analysis, which effectively partition the
parameter-space into a small number of easily charac
terized regions. See, for example, Cagan eta1., “Innova
tive Design of Mechanical Structures From First Prin
ciples ” (1988). ,

Unfortunately, these techniques do not work well in
all design domains. In the mechanical engineering do
main, for example, engineered objects may have equa
tions of motion that are quite complex, highly non lin
ear, and dif?cult to comprehend. Trying to understand
these descriptions well enough to synthesize new de
signs is an extremely dif?cult task. Thus, much design
proceeds by the designer building and/or simulating
devices, analyzing the designs, and gaining intuition
about their behavior over the course of design modi?ca
tion. As experience in the domain is gained, the design
cycle is shortened, because the designer has a better
idea of what will and will not work for a given problem.

Relying on one’s own or on others’ experience is
presently the most prevalent means of designing mecha
nisms. Often, designers repeatedly construct the same
sort of mechanisms and do not view their domain as
linkage design. These designers develop their own ter
minology, design criteria, and solution methods;

5,253,189
3

Burmester theory and other linkage synthesis tech
niques are unknown to them. An example of this phe
nomenon is found in the automobile industry. This in
dustry employs suspension designers, window crank
designers, hood mechanism designers, etc., but few of
these people have experience in the general problem of
linkage design.

Experience with one narrow segment of linkage de
sign does not confer the designer with any special com
petence at designing other types of mechanisms. When
the suspension designer must create a different type of
linkage, it is a frustrating, time-consuming task. The
analytic tools are hard to use, the design space is too
large and convoluted to keep track of easily, and the
designer’s intuition gained from previous problems
often proves useless. Further, because of the complexity
and non-continuous nature of the device behaviors, the
traditional expert systems paradigm of coupling proto
typical examples with a set of design modi?cation oper
ators is not well suited to synthesizing mechanisms,
both from the perspective of ef?ciency and of model
ling what human designers do.

In an attempt to overcome these problems, the
ADAMS program (Automatic Dynamic Analysis of
Mechanical Systems) and IMP (Integrated Mechanisms
Program) have been used to simulate mechanical sys
tems. In general, both of these programs use some initial
con?guration of a mechanical system and project or
simulate the position, velocity, acceleration, static, and
dynamic forces in the system in response to an applied
force by stepping through differentially-small time in
crements. The ADAMS and IMP programs are de
scribed, along with a wide variety of other systems, in
Shigley et al., Theory of Machines and Mechanisms
(1980), which is incorporated herein by reference for all
purposes.
A variety of problems arise in the use of the ADAMS

program and other similar programs. For example, it is
often found that the user has over-constrained the sys
tem at which point the simulator ignores certain con
straints which have been applied by the user, without
his or her knowledge. Programs like ADAMS are spe
cialized for the dynamic analysis of mechanisms, al
though they claim to be useful for kinematic analysis as
well. In a dynamic simulation of a mechanism, mass and
interia terms allow the simulation to stay on a single
branch of the solution space (there are multiple solu
tions to both the dynamic and kinematic equations). In
a kinematic simulation, there is no mass or interia infor
mation, so the simulator exhibits a tendency to
“bounce” back and forth between different branches of
the solution space, unless the step size used is extremely
small.

Further, in kinematic optimization it is often desirable
to “re-assemble” a mechanism at a few selected points
(the points of interest), rather than simulating a whole
cycle of the mechanism. This substantially reduces com
puter usage and the time necessary to create a design.
ADAMS and other similar programs cannot reliably
reassemble a mechanism at a few selected points, be
cause when the mechanism is assembled, the mechanism
is just as likely to assemble in one con?guration as in the
other (assuming kinematic assembly only). In a kine
matic simulation, ADAMS attempts solves this problem
by calling a “dynamic solver” when necessary. The use
of a dynamic solver precludes the ability to assemble the
mechanism at a select set of points in a reliable and
repeatable fashion. The ADAMS program and others

20

25

30

40

45

50

55

60

65

4
are, therefore, incapable of assembling a mechanism at a
particular driving input and a particular con?guration.
Kota et al., “Dwelling on Design,” Mechanical Engi

neering (August 1987) pp. 34—38 describe a method of
performing kinematic synthesis (MINNDWELL) in
which a user creates a dwell mechanism by manually or
semiautomatically designing an output diad (Z-bars) to
add on to a four-bar mechanism selected from a catalog.
No optimization is performed on the dwell mechanism.
Further, by using a catalog only, without any form of
optimization, the scope of problems which may be
solved is extremely limited; to solve a large variety of
problems the catalog would be unmanageably large.

In order to optimize a broad range of mechanical
linkages various statistical methods have been proposed
including simulated annealing, continuation methods,
and gradient based optimization. In simulated anneal
ing, an error function is determined as a function of one
or more parameters. The error function is by
selecting two values of the parameter, determining the
error function for the values, and comparing the values
of the error function. If the second value of the parame
ter produces a lower error function, this value of the
parameter is selected. If the second value parameter
produces a higher value of the error function it may be
selected depending on the step and Boltzman probabil
ity distribution. Simulated annealing is described in Van
Laarhoven et al., “Simulated Annealing: Theory and
Applications,” D. Reider Pub. Co. (1987).
From the above it is seen that an improved method of

performing kinematic analysis is desired.

SUMMARY OF THE INVENTION

A method and apparatus for performing kinematic
analyses are disclosed. Before performing detailed anal
ysis of the system using, for example, exact linkage
geometry, the motions of the mechanisms links subject
to abstract classes of forces are determined, and the
con?guration of one or more transitions is determined.
The method is independent of the exact numerical val
ues of the mechanism’s link lengths. The simulation
method uses as input a topological description of a link
age (links, joints and joint types, and their connectivity),
and an assumed abstract force or set of forces applied to
a joint or set of joints. Using the method, the linkage’s
instantaneous movements subject to the applied for
ces(s) can be restricted to certain qualitatively distin
guishable ranges. Given these ranges of movement, it is
possible to calculate the next qualitatively distinct state
or set of states to which the mechanism may progress.
The set of all legal transitions from one qualitative state
to another qualitative state forms a directed graph,
herein called an “envisionment.” A particular path
through the envisionment describes a particular qualita
tive behavior that a designer intends a mechanism to
have.
Each state in the envisionment can only be satis?ed if

certain geometric constraints hold. By picking a partic
ular path through a mechanism’s envisionment, the
geometric constraints are used to restrict the possible
values of the link lengths to the set of values that satisfy
the conjunction of the constraints associated with each
state in the envisionment. The negation of constraints
associated with states which have been explicitly
marked as undesirable can also be used to further re
strict the range of parameter values. Thus, by specifying
a particular mechanism behavior qualitatively, suitable

5,253,189
5

ranges of parameter values for dimensional synthesis
can be determined.

Based on the qualitative analysis (or, alternatively,
input from a conventional linkage “catalog”), the link
age is optimized using an improved general purpose
optimizer. The method recognizes that a vector objec
tive function is being utilized. In particular, the optimi
zation method uses information about the pattern of
changes in the error of each of the individual constraints
that make up the error function. A step size for each
parameter in the parameter space is determined. De
pending how an error function is changing, the optimi
zation method scales its step size and slightly modi?es
the direction of the step.

In some embodiments, an iterative kinematic solver is
used in the optimization. However, in preferred em
bodiments, a closed form generator is used. The closed
form generator generates a non-iterative solution tech
nique.
The closed form generator creates assembly functions

for a mechanism. Knowledge of geometry and topology
is encoded in the form of rules that are used to “prove”
by geometric construction that a mechanism of particu
lar topology can be assembled. When the “proof’ is
complete, it is run as a procedure to assemble the mech
anism. The proof by geometric construction uses a small
amount of up-front computer time, but once the proof is
complete, run time performance becomes essentially
linear in mechanism size rather than cubic.
The method is highly efficient in terms of computer

usage and much more stable as compared to prior art
systems.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 provides a general flow chart of the kinematic
analysis method and apparatus described herein.

FIG. 2 illustrates a user input screen useful in kine
matic synthesis.
FIGS. 3a and 3b illustrate screens showing the opti

mization process display and a selection menu, respec
tively.
FIGS. 4a, 4b, and 4c illustrate a single link in a link

age, along with the coordinate system used herein.
FIG. 5 illustrates a 4~bar linkage.
FIGS. 60 to 6d illustrate possible transition states

between two links.
FIGS. 70 to 7c,i1lustrate the possible transition states

of a 4-bar linkage.
FIG. 8 illustrates the optimization of a linkage.
FIG. 9 illustrates a 3-bar linkage used in illustration of

the closed form kinematic analysis method.
FIG. 10 illustrates an automobile suspension.
FIGS. 11a to 11f illustrate the qualitative kinematics

methods as it is applied to a S-bar linkage.

DETAILED DESCRIPTION OF THE
INVENTION

Contents

I. General
II. Kinematic Solver
III. Closed Form Generator

A. Subsystem System
B. Subsystem Utilities
C. Subsystem Representation
D. Subsystem Closed-Form

1. File Match
2. File Engine

15

20

25

30

35

45

55

65

6
3. File 3D-Rules
4. File SD-Find

E. Subsystem Geometry
F. Subsystem Run-Time

1. File Primitives
G. Subsystem Simulation
H. Subsystem Demo

IV. Optimization Method
A. File Optimization-Spec
B. File OS-Functions
C. File Constraint-De?nitions
D. File Optimizer
E. File Lorenberg-Marquardt-Optirnizer

V. Qualitative Kinematics
A. File Kempe
B. Files Crosshair~Blinker and Slider-Blinker
C. Files Pivots, Bar, Angles, Slider
D. Files Menus and Labels
E. Files Flavors
F. File Constraint-System
G. File Constraint-System-Z
H. File Constraints

VI. Catalog Generation and Selection
A. File Unisirn
B. File Newpsil
C. File 1 Base
D. File Graph
E. File Getpath
F. File Fourier
G. File Catalog-Linkages
H. File Catalog

I. General

A flow chart of the main components of the system
disclosed herein is provided in FIG. 1. The designer
may ?rst select a mechanism from a catalog 9 via re
trieval language 11. The mechanism is optimized with
an object-oriented, general-purpose optimizer 10 cou
pled to a kinematic solver 12. A designer interacts with
the system through control panels 14 and views the
results of simulations and optimization runs through
animated output 16.
The constraints for a given linkage optimization

problem are entered in either graphical or textual form
via constraint language 18. The Linkage Assistant
(T LA) simulator translates the symbolic constraint de
scriptions into numerical penalty functions to be used in
optimization, and maintains a mapping back to the sym
bolic descriptions for later display. The effect of each
constraint on the problem solution is displayed both
graphically and textually via constraint display 20.
For many problems, the kinematic solution can be

made substantially faster through the use of closed-form
generator 22 for kinematic solutions. In a preferred
embodiment, a qualitative analysis 13 is performed in
lieu of a catalog selection prior to performing detailed
numerical analysis. The qualitative analysis procedure
de?nes how the structure will respond to an applied
force (qualitatively) and how the structure will pass
through various landmark states. TLA may, in some
embodiments, be provided with both a qualitative anal- _
ysis mechanism and a catalog selection of the type
known to those of skill in the art.
FIG. 2 shows a control panel for an optimizer, in the

process of optimizing a crane design. The problem con
straints are shown in the left-most window, labeled
“Constraints.” A bar graph notation is used to show the
relative importance (i.e., what fraction of the total error

5,253,189
7

each constraint contributes) of the different constraints
toward achieving a solution. It will of course be appar
ent that the particular display mechanisms used herein
for illustration could readily be replaced by other dis
play mechanisms. For example, pie charts, numerical
displays, or color displays (which show “hot spots”)
could readily be utilized. The middle window, “Infor
mation,” displays the values of the linkage parameters
and other related information. The right-most window
is' the control panel, which allows the user to simulate
the mechanism, to start and stop optimization, and to
modify the problem constraint.
A display of the linkage is shown in FIG. 3a. The

window in the left shows the initial state of the optimi
zation. In the example shown therein, it is desired that
the path of the mechanism pass through points “p0” and
"p1” as well as moving in a straight line between those
points. There are restrictions on the width, height, and
position of the mechanism, as shown in the “Con
straints” window of FIG. 2. The window on the right of
FIG. 3a shows the mechanism after optimization.
A designer may provide an initial guess for the opti

mization (for example, an existing mechanism that will
be incrementally modi?ed), or a guess can be generated
directly from the design constraints. In the latter case,
problem features may be extracted from the problem
speci?cation and used to index into the catalog. Alter
natively, the designer may not have a good idea of what
constraints to specify, and may choose to browse
through the possible paths that the class of mechanism
can trace. The path browser interface to the catalog is
shown in FIG. 3b. The window on the left is a page
from the catalog. Each curve shown is the “average” of
a family of related mechanism paths. Each curve family
can be inspected. For example, selecting the bottom
middle curve on the left-hand window results in the 12
similar mechanism paths of that family being displayed
in the right-hand window. Thus, the hierarchical nature
of the browser allows the user to ?nd quickly the kind
of path required for a particular problem.

In one embodiment, the code for TLA is written in
Common LISP, using CLOS (Common LISP Object
Standard), and HYPERCLASS for object-oriented
substrates (Languages well known to those of skill in
the art). CLOS is used to represent linkages comprised
of links, joints, markers, different optimizers, optimiza
tion speci?cations (which describe the problem con
straints and optimization strategy), and the various con
straints used in the problem speci?cation. CLOS is most
preferred because of its efficiency in slot accessing, and
because it can be compiled ef?ciently; both are impor
tant concerns in the numerically intensive areas of kine
matic modelling. HYPERCLASS allows for fast and
easy construction of the user interface.

Details of the kinematic solver, the optimization
method, the closed form generator, and the qualitative
analysis procedure are individually discussed below.

II. Kinematic Solver

The kinematic solver 12 used herein could be an
iterative kinematic solver of the type known to those of
skill in the art such as the ADAMS solver. In a pre
ferred embodiment a closed form simulation is provided
dong with an iterative solver. In preferred embodi
ment, the closed form simulation method is used when
ever possible and the iterative kinematic solver is used
only for problems or portions of problems which cannot
be solved by the closed form kinematic solver.

20

25

35

45

65

8
III. Closed Form Generator

Traditional kinematic solvers often employ some
root-?nding algorithm (such as Newton-Raphson) on
the set of equations de?ned by joint constraints, which
de?ne how the various links are relatively constrained
and may be used in the method described herein (see,
for example, Turner, et al., “Optimization and Synthesis
for Mechanism Design,” Proceedings ofA UT OFA C T -88
(1988), which is incorporated herein by reference).
These equations are solved numerically, not analyti
cally. However, these solvers are iterative in nature,
and have two major drawbacks: they are slow; and they
are often unable to distinguish which branch of a solu
tion they are following. The algorithms typically run in
time proportional to the cube of the number of joints in
the linkage. Many kinematics problems can be solved in
closed form (i.e., analytically), even though they are
traditionally solved iteratively.

Therefore, in a preferred embodiment, a closed form
generator 22 is used to generate a closed form (non-iter
ative) procedure to assemble a mechanism before it is
simulated or optimized. Alternatively, when it is not
possible to generate a closed form procedure, the
method generates a procedure which uses a mix of
closed form and iterative solution techniques. The re
sult is that the kinematic solver requires little or no
iteration, permitting the system to run faster than prior
art systems. Further, it is possible to reduce or eliminate
chaotic behavior in the solution of the system and may
result in an explicit representation of which root of an
equation is desired (and, hence, the physical manner in
which the mechanism is to be assembled).

In general, the method herein provides for the auto
matic creation of “assembly functions” for computer
simulation and optimization of mechanisms. An assem
bly function is a function which assigns values to the
position and orientation state variables for the bodies
that comprise the mechanism, subject to a set of con
straints (e.g., the driving inputs of the mechanism, limits
on motions, etc.).

Since only a limited number of arithmetic operations
are performed for a single mechanism, and since num
bers in data structures used in conjunction with the
closed form generator may be reset before each assem
bly, it is possible to use single precision arithmetic in
conjunction with the method herein. This results in
signi?cant time savings in performing simulations and is
dif?cult to achieve in the use of traditional kinematic
solvers such as ADAMS. Traditional kinematic solvers
require double precision arithmetic to avoid accumula
tion of error over a large number of calculations.
The closed form simulation system uses a knowledge

based approach to kinematic assembly. The two forms
of knowledge that are required for this approach are
geometric knowledge and knowledge of topology. To
pological information describes the connectivity of the
mechanism. Geometric knowledge is used to determine
how to solve constraints, as well as how to generate
new constraints that represent partial knowledge about
components of the mechanism.
The geometric constraints describing the relative

motion between various joints in a mechanism have
been known since the late nineteenth century in, for
example, Reuleaux, The Kinematics of Machinery, Mac
Millan and Co. (1876). This knowledge is encoded
herein in the form of rules that are used to prove by
geometric construction that a mechanism of a particular

5,253,189
9

topology can be assembled, given certain driving in
puts. These proofs use a set of high-level lemmas each
of which has a procedural implementation that solves a
speci?c set of constraint interactions. When the proof is
complete it is run as a procedure to assemble the mecha
nism.

An example problem is used below to compare the
traditional and the knowledge-based approaches to
kinematic assembly. The simplest possible assembly task
is to put together a three-bar truss. The truss, shown in
FIG. 9, has three links, a, b and c, and three revolute
joints J1, J2 and J3. A revolute joint allows rotational,
but not translational relative movement. By considering
this a two-dimensional problem, each link need have
only three degrees of freedom, denoted by x,-, y,-, and 0,‘,
where xiand y,- designate the location of a point in space
and 6,- represents an angle of a joint from some fixed
reference. The symbols a, b and c are used to denote the
lengths of the links, as well as their names. The con
straint equations describing the truss are shown below,
where the ki’s are constants, and where a function value
of zero indicates that a constraint is satis?ed:

Equations f1, f1 and f3 state that link a is grounded (i.e.,
its position and orientation are known). f4 and f5 de
scribe the constraints imposed by joint J1. Link b is free
to rotate, as long as one end of it remains coincident
with the point (xmya) on link a. f6 and f7 describe the
constraints imposed by joint J 2 , while fg and f9 describe
the constraints imposed by joint J 3. These constraints
cannot easily be solved by the “one-pass” method in the
prior art (e.g., Sutherland et al.). Therefore, a relaxation
technique is used. Solving the equations by the Newton
Raphson method involves calculating step sizes for
each parameter, updating the parameter values, and
iterating until the error is suf?ciently low. If p is the
vector of parameters (x,,, ya, 64, n5, y;,, 01,, x0, yclic), then
the step vector 8p is calculated byi

Each value in 5 is updated as follows:

dfi

When the total error fifiis suf?ciently low, the relax
ation process is complete. One problem with this tech
nique is that there are two solutions to the assembly
problem; the one shown in FIG. 9, and the mirror image
of FIG. 1 about link a. Using Newton-Raphson, there is

20

25

30

35

40

45

55

10
no way to guarantee which solution will be obtained.
Another notable observation is that the J acobian matrix
used in this solution technique is quite sparse:

dfi he}
I 0 0 0 0 0 0 O 0

0 l 0 O 0 O 0 0 0

O 0 l O O O 0 0 0
1 O 0 — l 0 O 0 0 0

0 l 0 0 - l 0 O 0 0

0 0 0 l 0 -bsin0b — l O sindc

0 0 0 0 l bcosOb 0 — l —ecos0¢
-l 0 asin?a O 0 0 ' l 0 0

0 —l —¢oos0a 0 0 O 0 l 0

Therefore, the set of equations may be solved using
substitution to reduce the sparsity. Consider the follow
ing steps (new constants k,- are introduced as needed):

Step 1. Rewrite f4 and f5, using f1 and f2:

Step 3. Rewrite f6 and f7, using the results of Step 1 and
Step 2:

The original problem is now reduced to solving two
equations in two unknowns, 9b and 0c. The equations
are nonlinear, so there can still be an ambiguity as to
which solution is the “right” one.
The rewrite steps performed above are not blind

syntactic manipulations of equations; each step has a
process of translating link b so that point (xb,yb) is coin
cident with point (xmya). Likewise, Step2 can be satis
?ed by the translation of link 0 so that point (xayc) is
coincident with the other end of link a. The as-yet
unconstrained ends of links b and c must lie on circles of
radius b and c, respectively, centered about their corre
sponding ?xed ends. The location of I; can be found by
intersecting these circles. Note that two circles intersect
in at most two points, which are the two solutions that
Newton-Raphson might produce. The assembly of the
truss by geometric construction may, therefore, be sum
marized as follows:

(1) Note that link a is grounded.
(2) Translate link b to satisfy the coincidence con

straint of joint J1.
(3) Translate link c to satisfy the coincidence con

straint of joint I3.
(4) Intersect a circle of radius b centered at J1 with

the circle of radius 0 centered at J3 to ?nd the location
Of J 2.

5,253,189
11

(5) Rotate link b about J1 until its free end is coinci~
dent with 1;.

(6) Rotate link c about J 3 until its free end is coninci
dent with 1;.
When this kind of reasoning is extended from two 5

dimensions to three, there is no longer a simple mapping
between state variables denoting a link’s degrees of
freedom and the solution of the constraint equations.
For example, a rotational axis in three-dimensional
space de?nes a complex set of relations between the
rotational parameters of an object. Constraining the
orientation of a link to a rotational axis does not neces
sarily ?x any of the rotational state variables, but it
makes later solution easier when other constraints are
determined. By reformulating the kinematic assembly
problem from algebraic equations to geometric con
straints, a more usable understanding of the problem
may be had.
One important aspect of solving these problems effi

ciently and easily lies in solving for the mechanism’s
degrees of freedom, rather than trying to solve for its
state variables. Describing the state of a rigid body is
through its degrees of freedom is more natural and
?exible.
A rigid body in 3-space has six degrees of freedom. 25

These can be speci?ed by the use of six state variables as
in an algebraic formulation. The state variables de?ne a
mapping between the local coordinate system of the
rigid body and the global coordinate system of the
world. The six state variables may be denoted <x
,y,z,0x, 0x,0z>, where the sub-tuple <x,y,z> denotes
the position of the origin of the local coordinate system
in global coordinates, and the sub~tuple <0,“ 0,‘, 02>
denotes the rotation of the axes relative to the global
coordinate system. Fixing the value of a state variable
of a rigid body implies removing one degree of freedom
from the body. However, ?xing a degree of freedom in
a body does not imply determining one of its state vari
ables. Pinning down a degree of freedom may instead
introduce a complicated set of relations between several
state variables. Consider the following: Suppose a par
ticular point p is constrained on a body B to be ?xed in
space. This removes three degrees of freedom from the
body (it is still free to rotate about p). However, this
constraint does not allow us to determine any of the
state variables of B. If p were at <0,0,0> in F5 local
coordinates, then <x,y,z> would be fully known. But
in general, p could be at any position in B5 local coordi
nates, so <x,y,z> is constrained to lie on a sphere
centered at p. Since a sphere is a surface with two de
grees of freedom, this constraint accounts for one of the
degrees of freedom that was removed. The other two
degrees of freedom contribute to relations between the
rotational and translational state variables. If the point
<x,y,z> is placed at some position (u,v) on the afore
mentioned sphere, this new point and p together de?ne
an axis of rotation for B; that is, B now has only one
rotational degree of freedom remaining. The axis of
rotation could be at an arbitrary angle with respect to
B’s local coordinate system, so it de?nes a complex
relation between 0x, 0,, 02. Thus, ?xing point p on body
B has not determined any of the six state variables, but

20

35

45

50

55

60

12
rather has speci?ed a set of complicated nonlinear con
straints between all six state variables.

Pinning down degrees of freedom is substantially
easier than attempting to derive the complex relations
between the state variables of all links in a mechanism.
In fact, there is a body of literature concerning graphi
cal analysis of mechanisms, dating from the late nine
teenth century; some textbooks still introduce kinematic
analysis using graphical methods.

In a mechanism, a joint between links A and B causes
points on link B to be constrained relative to link A's
coordinate system (and conversely). The geometric
constraints describing the relative motion between vari
ous' joints used in mechanisms were investigated by
Reuleaux in 1876. The loci of possible positions for
as-yet unconstrained points on links are relatively sim
ple surfaces and curves, such as planes, spheres, cylin
ders, circles, lines, etc. A joint attached to links A and B
must satisfy some constraints relating to the loci of
possible motions from link A and B. Thus, by intersect
ing the geometric constraints of link A and B, more
information is derived concerning the exact location of
the joint. As joints are located, they further restrict the
degrees of freedom of the links they connect. In this
way, increasingly more speci?c information about the
positions and orientations of the mechanism’s links may
be derived.

EXAMPLE

A second example is provided in FIG. 10 in which a
simple automobile suspension 100 is illustrated. The
suspension includes ground 102, upper control arm 104,
lower control arm 106 and pin 108. The driving input on
the mechanism is 0, the angle between the lower control
arm and ground. For purposes of the discussion below,
grounds 102 are represented by markers R1 and R2, the
left end of the upper control arm is represented by
marker UCARI and the right end is indicated by
marker UCASl, the left end of the lower control arm
106 is indicated by marker LCARI and the left end is
indicated by LCASl, and the upper and lower ends of
king pin 108 are indicated by markers KPSl and KPSZ,
respectively (S indicating spherical joint and R indicat
ing revolute joint).
For each marker there can be knowledge of align

ment, orientation, and/or position. Initially, there is no
knowledge of any of these items. The angle of the lower
control arm is designated as the input. Each joint im
poses constraints (which are stored in a database) be
tween the two markers that participate in that joint. For
example, a spherical joint imposes the constraint that
the two markers be coincident, while a revolute joint
imposes the constraint that the two markers be coinci
dent and that their z-axes are aligned.
To start, the method works its way around the link

age and ?lls in knowledge in a “table” which arises from
givens of the system. To fill in the table, the TLA sys
tem will have to postulate that certain actions have been
carried out that will ensure the inferences are valid.
These actions will then be turned into a program to
assemble the linkage.
The method is iteratively applied to ?ll in Table 1:

TABLE 1

R1 R2 UCARl UCASI LCARl LCASl KPSl KPSZ

Alignment?
Orientation?

5,253,189
13

TABLE l-continued
R1 R2 UCARl UCASl LCARl LCAS l

Positon?

The method goes through cycles of deductions. The
cycles include steps of choosing any applicable infer
ence, generating an operation to be performed on the
linkage, recording newly known information, and test
ing whether the process is complete. In the present case, 10
the process begins a cycle in which, since the ground
“link” is fully known, its position, orientation, and align

KPS]

14

KPSZ

rotation must be about the point in space occupied by
marker UCARl, since rotation about any other point
would cause its position (previously marked as shown)
to be changed. A similar line of reasoning allows the
alignment of the z axes of marker R2 and marker
LCARI. Table 4 illustrates the state of knowledge at
this point:

TABLE4
in R2 UCARl ucas1 LCARl LCASl KPSI KPSZ

A? V V V V
or V V
P’! V V V V

ment are known. Therefore, the ?rst inference which is 20
chosen is that since the markers R1 and R2 are
grounded, their position, orientation, and alignment are
known. The newly recorded information is re?ected in
Table 2 below. This ?rst inference is stored for later
uses.

With the new actions added, the program of actions is
now:

1. Cache markers on ground link.
2. Translate upper control arm to make UCARI coin

cident with R1.
3. Translate lower control arm to make LCARI coin

TABLE 2v
Rl R2 UCARI UCASl LCARl LCASl KPSl xrsz

A? V V
0? V V
P? V V

Since a signi?cant amount of information is not yet
known, the process continues. In a second cycle the
inference which is chosen is that marker R1‘ is known
and shares a position with UCARl. Provided that the
upper control arm is translated so that markers UCARl
and R1 are coincident, the position of marker UCARI
can be known. This requires an action: “Translate the
upper control arm to make UCARl coincident with
R1.” A similar cycle can be carried out for LCARI,
after which the knowledge table can be updated as
shown in Table 3.

35

cident with R2.
4. Rotate upper control arm about UCARI to make

the z axis of UCARl align with the z axis of R1.
5. Rotate lower control arm about LCARI to make

the z axis of LCARI align with the z axis of R2.
It can also be seen that the alignment and orientation

of the spherical joints KPSl, KPSZ, LCASI, and
UCASI are not necessary because the only constraints
on spherical joints are that their markers be coincident;
there are no constraints on the relative alignment or
orientation of the two markers. Accordingly, Table 4

TABLE3
R1 R2 UCARl UCASl LCARl LCASl KPSI KPSZ

A? V V
0? V V
in V V V V

The next cycle uses the “knowledge” that since
markers UCARI and R1 are joined at a revolute joint,
their x axis (extending out of the page) must be aligned.

can be modi?ed as shown in Table 5 where “X” means
that the system does not care whether the value is found
or not because it is not needed:

TABLE 5
R1 R2 UCARl UCASl LCARl LCASI KPSl KPSZ

A? V V V x V x x x
0? V V x x x x
m V V V

At this point the program of “actions” looks like: 60
l. Cache markers on ground link.
2. Translate upper control arm to make UCARl coin

cident with R1.
3. Translate lower control arm to make LCAR‘ coin

cident with R2.
As can be seen in Table 3, the z axis of R1 is already

known, so the action that must occur to align the axes is
to rotate the upper control arm to align the axes. This

65

The next inference uses knowledge of the driving
input 6 to set the relative orientation of markers
LCARI and R2. These markers are already aligned.
For the driving input constraint to be satis?ed, the
lower control arm must be rotated about the z axis of
LCARl until the x axis of LCARl makes an angle of 0
with the x axis of R2. Now marker LCARl has a posi
tion and an orientation (a marker having an orientation

5,253,189
15

implies the marker also has an alignment, since an align
ment is a prerequisite to orienting the marker). Thus,
the marker has no more degrees of freedom, implying
that the link it is attached to must be in its ?nal place for
this assembly. Whenever a marker on a link has both a
position and an orientation, then its associated link may
be marked as “known.” Thus, the next action is to cache
the markers on the lower control arm. This means all
markers on the lower control arm have known posi
tions, alignments, and orientations. Table 6 re?ects the
new state of knowledge.

10

16
2. Translate upper control arm to make UCARl coin

cident with R1.
3. Translate lower control arm to make LCARI coin

cident with R2.
4. Rotate upper control arm about UCARI to make

the z axis of UCARI align with the z axis of R1.
5. Rotate lower control arm about LCARI to make

the z axis of LCARl align with the z axis of R2.
6. Twist lower control arm about 2 axis of LCARl to

make x axis of LCARI makes an angle of 0 with the x
axis of R2.

TABLE 6

R1 R2 UCARl UCASl LcARl LCASl XPS] KPSZ

A? V V V x V x x x
0? V V x V x x x
P? V V V V V

The program of actions now looks like: 7. Cache markers on link lower control arm.
1. Cache markers on ground link. 20 8. Translate the kingpin to make KPS2 coincident
2. Translate upper control arm to make UCARl coin

cident with R1.
3. Translate lower control arm to make LCARI coin

cident with R2.
4. Rotate upper control arm about UCARI to make

the z axis of UCARl align with the z axis of R1.
5. Rotate lower control arm about LCARI to make

25

with LCASl.
It is now noted that there is a constraint on UCASl,

i.e., it must lie on a circle with its center on R1. This
constraint comes from restrictions on link movement
imposed by the revolute joint that connects R1 and
UCARI. This constraint is stored along with the infor
mation shown in Table 7, as shown in Table 8:

TABLE 8

R1 R2 UCARl ucAs1 LCARl LCASI KPSl KPS2

A? V V V x V x x x
0? V V x V x x x
P? V V V V V V
Constraint Circle

the z axis of LCARI align with the z axis of R2.
6. Twist lower control arm about 2 axis of LCARl to

make x axis of LCARl make an angle of 0 with the x
axis of R2.

It can now be noted that KPS2 and LCASI are coin
cident markers on a spherical joint. Therefore, KPSl
must lie on a sphere around the marker KPSZ. This
information is added to Table 8, as shown in Table 9:

TABLE 9
R1 R2 UCARI UCASl LCARl LCAS] KPSl KPSZ

A? V V V x V x x x
0? V V x V x x x
P’! V V V V V V
Constraint Circle Sphere

7. Cache markers on link lower control arm
Provided that the kingpin is translated so that mark

ers LCASl and KPS2 are coincident, the position of
marker KPS2 can be known. This requires an action:
“Translate kingpin to make KPSZ coincident with
LCASl.” Table 7 shows the state of knowledge at this
point:

50

The next inference/deduction chosen is to intersect
the constraints of UCASl and KPSl since they are
constrained markers on the same joint. Since there are
two possible intersection points the program must ob
tain additional input from the user which will indicate
whether the joint should be assembled in the con?gura
tion shown in FIG. 10 or an “other” possible manner.

TABLE 7
R1 R2 UCAR] UCASl LCARl LCASl KPSl KPSZ

A? V V V x V x x x
0? V V x V x x x
P? V V V V V V

The program of actions now looks like: After this intersect procedure is conducted, the position
1. Cache markers on ground link. of UCASl and KPSl are known. Table 9 can now be

amended as shown in Table 10:

' TABLE 10

RI R2 UCARl UCASl LCARI LcAst KPSI KPSZ

A? V V V x V x x x
0? V V x V x X x

5,253,189
17 18

TABLE 10~continued
R1 R2 UCARI UCASl LCARl LCASl KPSl KPSZ

P’! V V V V V V V V

The program of actions is now:
1. Cache markers on ground link.
2. Translate upper control arm to make UCARI coin

cident with R1.
3. Translate lower control arm to make LCARl coin

cident with R2.
4. Rotate upper control arm about UCARl to make

the z axis of UCARl align with the z axis of R1.
5. Rotate lower control arm about LCARl to make

the z axis of LCARI align with the z axis of R2.
6. Twist lower control arm about 2 axis of LCARl to

make x axis of LCARl makes an angle of 0 with the x
axis of R2.

7. Cache markers on link lower control arm.
8. Translate kingpin to make KPSZ coincident with

LCASI.
9. Intersect the circle (centered at R1 whose normal is

the z axis of R1 and whose radius is the distance from
UCASl to the z axis of R1) with the sphere (centered at
KPSZ whose radius is the distance between KPSI and
KPSZ). Rotate upper control arm about 2 axis of R1 so
that UCASI is at the intersection point. Rotate kingpin
about KPSZ so that KPSI is at the intersection point.

' There is now enough information to determine that

15

20

25

8. Translate kingpin to make KPSZ coincident with
LCASl.

9. Intersect the circle (centered at R1 whose‘ normal is
the z axis of R1 and whose radius is the distance from
UCASl to the z axis of R1) with the sphere (centered at
KPSZ whose radius is the distance between KPSI and
KPSZ). Rotate upper control arm about 2 axis of R1 so
that UCASI is at the intersection point. Rotate kingpin
about KPSZ so that KPSl is at the intersection point.

10. Cache markers on upper control arm.
ll. Cache markers on kingpin. '
This set of actions is now compiled and stored as a

program that may be used iteratively to solve the mech
anism’s marker locations for different values of driving
inputs.
Not all mechanisms may be simulated using this

method. Linkages exist for which techniques like relax
ation or continuation are the only recourse. However, a
majority of linkages of interest to real designers may be
simulated using the new approach. The closed form
approach to linkage simulation has signi?cantly better
computational properties than traditional simulation
algorithms for the following reasons:
The algorithm is substantially faster than existing

the upper control arm link is completely known 30 methods. Although the proof by geometric con
(namely, two positions and an alignment). Thus, the struction has a complexity which is polynomial in
next action is to cache all the markers on upper control the size of the mechanism, the assembly procedure
arm. This means that the orientation of UCARl is now it derives grows linearly with mechanism size.
known. Table 10 can now be completed as shown in Thus the run-time performance of the program is
Table ll: 35 linear in the size of the mechanism rather than

TABLE 11
R1 R2 UCARl UCASl LCARI LCASl KPSl KPSZ

A? V V V x V x ' x x
0? V V V x V x x x
P? V V V V V V V V

The link kingpin has only two markers, neither of cubic. The storage required by the assembly proce
which has orientation or alignment. There is not enough dure is also linear in mechanism size, as opposed to
information to fully determine its position. In fact, it can 45 the quadratic dependence exhibited by traditional
be seen that the kingpin is free to rotate without affect- assembly methods.
ing its performance in the context of this linkage. This is The branches of the solution space are described by a
known in the literature as a passive degree of freedom. vector of “con?guration variables.” In this way, a
TLA recognizes this situation and marks the kingpin as particular branch of the solution may be speci?ed
being fully known. (In a real auto suspension, the king- 50 for mechanism assembly, avoiding the problem of
pin would be connected to the steering linkage; this ambiguous assembly.
connection would give the kingpin three markers, and Redundant information can be accommodated easily.
then it could be located in space.) The kingpin markers Since constraints on the mechanism are being
may now be cached. solved sequentially, there is no need to balance the
The ?nal program of actions is shown below: 55 number of constraints with the number of un
l. Cache markers on ground link.
2. Translate upper control arm to make UCARI coin

cident with R1.
3. Translate lower control arm to make LCARl coin

cident with R2.
4. Rotate upper control arm about UCARI to make

the z axis of UCARl align with the z axis of R1.
5. Rotate lower control arm about LCARI to make

the z axis of LCARI align with the z axis of R2.
6. Twist lower control arm about 2 axis of LCARI to

make x axis of LCARI makes an angle of 0 with the x
axis of R2.

7. Cache markers on link lower control arm.

60

65

knowns (as in relaxation techniques).
A variety of other analysis tasks may be solved using

generalizations of the knowledge-based kinematic as
sembly technique. Some of these include:

' Finding the instant centers of rotations of the various
links in a mechanism. The instant center of rotation
is the point in space about which the link can be
considered to rotate at a given particular instant. In
three dimensions. the instant center is de?ned by a
screw axis.

Determining kinematic velocities and accelerations,
i.e., how a link moves or accelerates with respect to
the movement of another part of the mechanism.

5,253,189
19

Determining mechanical advantage and torque ratios.
These are measures of the “leverage” that is gener
ated by the mechanism.

Determining J acobian matrices in closed-form for use
in optimization and sensitivity analysis.

Appendix 1 provides source code (in common LISP)
for implementing the closed-form kinematics method
disclosed herein. The code has been used on a Symbol
ics LISP machine and a Sun Workstation, but it will be
apparent to those of skill in the art that the method
could be adapted to any one of a variety of program
ming languages (e.g., pascal) and used on any one of a
variety of hardware systems (e.g., IBM, DEC, etc.).
Appendix 2 provides a worked-out example which pro
vides the closed form results for an automobile suspen
sion. The ?le spatial-Four-Bar de?nes the spatial four
bar linkage which is used in the example.
The method approaches the assembly of a linkage as

a matter of geometrical theorem-proving. To ?nd a way
of assembling the linkage is to construct a proof that the
linkage can, in fact, be assembled. The proposition that
a certain linkage can be assembled, given that certain
information is provided about it, is referred to herein as
an assembly theorem. Given a linkage and told what
initial information will be provided about it, the TLA
system attempts to prove the corresponding assembly
theorem. As it does so, it derives a procedure for assem
bling the linkage given that initial information.

This assembly procedure is stored away for future
use. It is very fast, operates in a ?xed set of data struc
tures, and can be called repeatedly. Since the assembly
theorem’s proof does not depend on any of the numeri
cal values of a given linkage, such as the exact locations
or sizes of the links and joints, the user can vary any or
all of these values at will without having to derive a
new assembly procedure. The system checks automati
cally to ensure that the assembly theorem does not
depend on the numerical values of the linkage. For
example, the assembly theorem’s proof might depend
on three points on a certain link not being colinear. A
change in the link’s structure that brought these three
points onto a common line would require the system to
locate a new proof of the assembly theorem, if in fact
one exists. Such situations are not common.
An assembly procedure takes several inputs. It takes

a fully speci?ed linkage, including the sizes and shapes
of all its links, the locations of the various joints on these
links, and the types of the various joints. (The attached
code provides for revolute, prismatic, spherical, univer
sal, cylindrical, and planar joints.) It also takes a number
of “input parameters,” that is, the values of some of the
parameters of certain of the linkages’s joints, such as the
angle between the two links that are attached by a cer
tain revolute joint or the displacement of a certain pris
matic joint. Finally, an assembly procedure must often
be supplied with a number of binary con?guration pa
rameters to resolve qualitative ambiguities in the assem
bly of the linkage such as mirror-image pairs of possible
ways of assembling portions of the linkage.
The TLA system can be usefully divided into four

major parts, each of them organized into a number of
subsystems. Each subsystem is further divided into a
number of ?les.
The ?rst part consists of relatively task-independent

utility routines (in the subsystem Utilities), data struc
tures and library functions for 3-D geometry (in the
subsystem Geometry), together with the task-speci?c
representations of linkages, links, joints, and so forth

20

25

35

45

55

60

65

20
and the common operations upon them (in the subsys
tem Representation).
The second part is the code in the subsystem Closed

Form that takes as input a qualitative description of a
linkage and a speci?ed set of input parameters and pro
duces as output an assembly procedure. The “computa
tion” in this part of the system is entirely symbolic.
The third part is the code that is used in assembling

particular linkages. The computation in this part of the
system, by contrast, is heavily numerical. In addition to
the procedures that compute the positions and orienta
tions of the various elements of a linkage (in the subsys
tem Run-Time), this part of the system also includes
routines for graphically displaying linkages and tracing
their motion (in the subsystems Window and Display).
The fourth and ?nal part is an open-ended set of

routines that ask for assembly procedures to be con
structed and then actually use them for various useful
ends such as simulating a linkage’s motion (in the sub
system Simulate), exploring of the consequences of
varying a linkage’s parameters (in the subsystem
Demo), and then actually adjusting those parameters to
optimize particular properties of the linkage (in the
subsystem Optimization, which is discussed in Section
IV below.
The TLA system employs a number of software tech

niques that might not be wholly familiar. For example,
object-oriented programming is utilized. TLA is writ
ten in Lisp because of the programming environments
that are available for rapid prototyping of symbolic
systems in Lisp. Little of this code should be difficult to
translate to a language such as Pascal. Some of the code
will not translate directly, though, because it is written
using an object-oriented extension to Lisp called PCL.
Object-oriented programming allows particular proce
dures, known as methods, to automatically dispatch to
different routines depending on the types of their argu
ments. PCL also supports a reasonably sophisticated
model of data types in which types can be arranged in a
hierarchy of more abstractly and more concretely spec
i?ed structures. Object-oriented programming in gen
eral and PCL in particular are described in a ?le called
PCL-Summary, which is stored with the documenta
tion for subsystem Geometry. PCL is described in
greater detail in the PCL Manual, available from Xerox.
Other unusual techniques are included with the discus
sion of the code below, along with details of each sub
system.

A. Subsystem System
Subsystem System comprises two short ?les that are

the first to be loaded and de?ne some parameters for the
remainder of the TLA system. It has two ?les, TLA.
System and Global-Variables.
The ?le TLA.System is what the Symbolics Genera

environment refers to as the “system de?nition” for the
system named TLA. This system de?nition, established
using the Defsystem form, permits the several ?les mak
ing up the TLA system to be compiled and loaded all at
once in a reasonable fashion. The system de?nition also
makes explicit the decomposition of the TLA system
into the subsystems described herein.
The ?le TLA System is speci?c to the Symbolics

Genera environment. A similar ?le could readily be
prepared by those of skill in the art for other LlSP
implementations (e. g., Lucid Common Lisp) due to lack
of standards for system de?nition ?les in Common Lisp.

